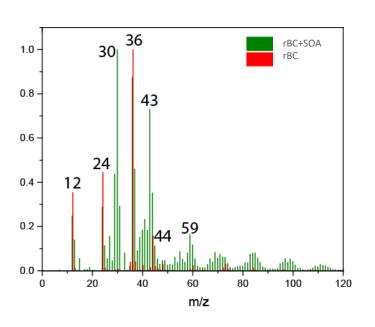
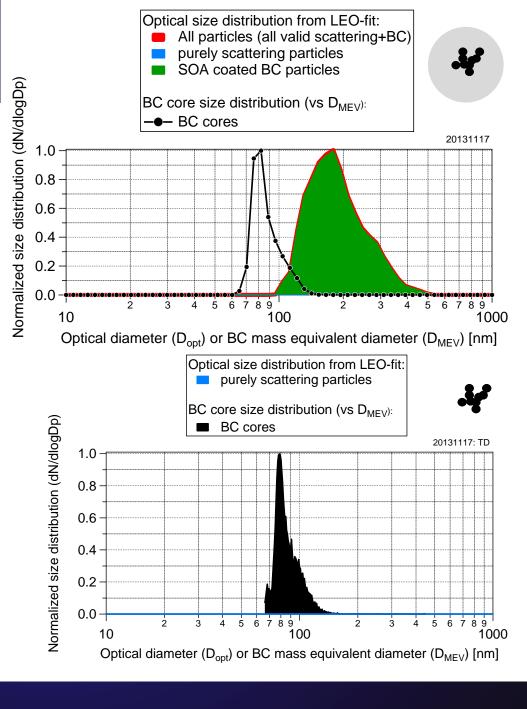

Soot Aerosol Aging Study (SAAS)

- PNNL Environmental Chamber
- Simulating Atmospheric Aging
 - Diesel soot (black carbon, BC)
 - "fresh" 120 nm diameter size-selected
 - α-pinene Secondary Organic Aerosol (SOA)
- Large suite of instruments
- 3 Kinds of Experiments
 - SOA coatings on BC
 - SOA coagulated with BC (Sedlacek et al., 2012)
 - SOA coagulated with BC, then coated with more SOA
- Dilution Studies
- Absorption (Enhancement) Studies
 - Thermal Denuder (TD) at 300°C to remove SOA (Cappa et al., 2012)
 - 30% (±3%) loss in the TD determined from SP2 number and mass

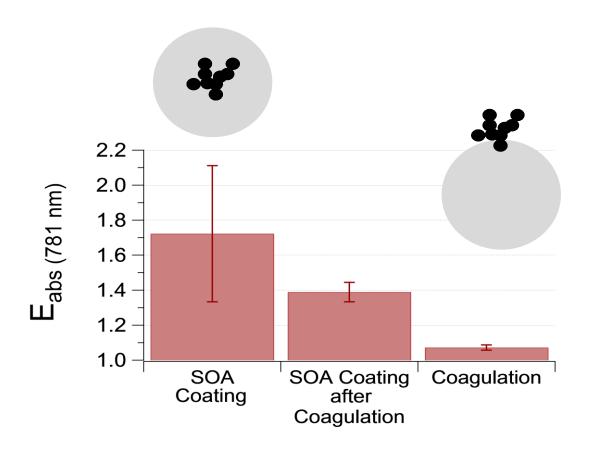
TD Method : *E*_{abs} @ 781 nm




• E_{abs} increases w/TD temp. (more complete SOA removal)

Los Alamos National Laboratory 3/15/2017 | 2

rBC Coating Analysis


- Coating thicknesses >50 nm
- SOA Coating removed at 300°C (SPLAT-II Mass Spectra and SP2)

781 nm Absorption Enhancement – Thermal Denuder Method

 Absorption enhancement (E_a) observed for thick SOA coatings, but minimal for coagulated BC (TD method; MAC is within 5%)

Preliminary Comparison with Mie Theory

Coating Experiment Measured Averages (\(\hat{\lambda} = 781 \) nm)

rBC MAC_{rBC}: 5.1 SSA_{rBC}: 0.03 E_{abs} : 1.0 rBC+SOA MAC_{rBC+SOA}: 7.5 SSA_{rBC+SOA}: 0.67 E_{abs} : 1.5

Core-Shell Mie Calculations ($\tilde{\lambda}$ = 781 nm)

Core RI = 1.82 - 0.74i; Shell RI = 1.45 - 0i

Core Dia. (nm)	Total Dia. (nm)	BC MAC	SSA	E_{abs}
84	84	4.0	0.03	1.0
84	270	8.1	0.75	2.1

Los Alamos National Laboratory 3/15/2017 | 5