# Modeling challenges simulating the microphysics of cold air outbreak conditions vs other mixed-phase shallow clouds



Ann Fridlind, NASA GISS

Supported by DOE ASR Program (PI Fridlind) NASA Radiation Sciences Program

## Mixed-phase stratiform cloud case studies

| Field    | Observation    | Cloud Top  | Cloud Temp. (C)        |               | Path (g m <sup>-2</sup> ) |        | Conc. $(cm^{-3})$ |                 |
|----------|----------------|------------|------------------------|---------------|---------------------------|--------|-------------------|-----------------|
| Campaign | Period (UTC)   | Height (m) | Top                    | Base          | Liquid                    | Ice    | Drops             | Ice             |
| SHEBA    | 7 May 1998     | 500        | $\overline{-20^\circ}$ | -18°          | 5–20                      | 0.2-1  | 200               | $\sim 0.0005$   |
| M-PACE   | 9–10 Oct. 2004 | 1000       | $-16^{\circ}$          | $-9^{\circ}$  | 110-210                   | 8 - 30 | 40                | $\sim \! 0.01$  |
| ISDAC    | 26 April 2008  | 800        | $-15^{\circ}$          | $-11^{\circ}$ | 10 – 40                   | 2-6    | 200               | $\sim \! 0.001$ |

SHEBA M-PACE ISDAC







## Mixed-phase stratiform cloud case studies

| Field    | Observation    | Cloud Top  | Cloud Temp. (C)          |               | Path (g m <sup>-2</sup> ) |        | Conc. $(cm^{-3})$ |                 |
|----------|----------------|------------|--------------------------|---------------|---------------------------|--------|-------------------|-----------------|
| Campaign | Period (UTC)   | Height (m) | Top                      | Base          | Liquid                    | Ice    | Drops             | Ice             |
| SHEBA    | 7 May 1998     | 500        | $\overline{-20^{\circ}}$ | -18°          | 5–20                      | 0.2-1  | 200               | $\sim 0.0005$   |
| M-PACE   | 9–10 Oct. 2004 | 1000       | $-16^{\circ}$            | $-9^{\circ}$  | 110-210                   | 8 - 30 | 40                | $\sim \! 0.01$  |
| ISDAC    | 26 April 2008  | 800        | $-15^{\circ}$            | $-11^{\circ}$ | 10–40                     | 2-6    | 200               | $\sim \! 0.001$ |





#### M-PACE: well-mixed, overcast, drizzling

 first stationary domain LES of similar roll convection reported by Gryschka et al. (2005)



**Figure 3.** Spectra multiplied with the wave number at successive distances from the ice edge at 5 hours (a) of the liquid water content  $q_l$  at the top of the boundary layer and (b) of the friction velocity  $u_*$  in the surface layer. The shaded bars indicate the wavelengths at which clear maxima appears in (a) as well as in (b).



**LWP** 

Klein et al. (2009)

0.2-0.8-km BL



## CAP-MBL: stratified, raining convective cells



## Mesoscale structures may depend on microphysics



Zhou et al. (submitted)
DHARMA with two-moment microphysics

How does drizzle amplify moisture variance scales?

- drizzle evaporation increases moisture stratification
- moist cold pools respond to rather than determine the horizontal scales



#### Different LES and microphysics schemes differ

- ever since M-PACE, similar intercomparisons have specified ice number concentration
- evidence of unknown ice formation process, perhaps associated with drizzle
- LWP and liquid-phase precip also still challenging for LES regardless of microphysics complexity





#### Observational objectives?

- constraining simulated dynamics
  - rolls and clusters undersampled by vertically pointing instruments
  - if stratification is expected (or even if not), dropsondes?
  - downwelling longwave radiative flux above cloud top
  - measurement approach to establish horizontal length scales?
- constraining microphysics
  - stratiform and well mixed but mixed phase?
    - aerosol and droplet number size distribution, aerosol hygroscopicity
    - liquid water path mesoscale structure
    - ice crystal properties (e.g. CPI), plus analyses to give quantitative guidance
    - ice nucleation rates, aerosol surface area (commonly dominated by supermicron mode under relatively clean conditions)
    - expect drizzle in mixed-phase if clean
  - cumuliform?
    - establishing structure by radar more central
    - radar supported in situ measurements