

3°S

4°S

7F2/T

- MCSs have preferential regions of formation and propagation over the Amazon
- MCS impacts can be felt on the large scale via rain and transports of heat, moisture, and momentum
- MCSs also play an important role in chemistry transport

Multi-scale convective interactions during GoAmazon2014/5

PI: Courtney Schumacher, Texas A&M University

0.90625° PP

Vertical Velocity (m/s)

Controls of precipitation during the Amazonian dry season Ghate, V. P., and P. Kollias, 2016: On the controls of daytime precipitation in the Amazonian dry season. J.

Hydrometeor., **17**, 3079-3097

Motivation and Objectives:

- Challenging for GCM to accurately simulate the rainfall during the Amazonian dry season, which has a significant impact on the rainforest.
- What factors control the daytime transition from shallow-to-deep convection? And what causes the number of rain events to decrease during the dry season?

Approach:

- Use data from the GO-Amazon field campaign and contrast the diurnal cycles of days with and without precipitation.
- Study the progression of key variables during progression of the dry season.

Kev Results

- Precipitation days had higher moisture above the BL compared to cumulus days, while it had lower LCL and surface sensible heat flux. -> Less CINE and lower entrainment
- Decrease in precipitation during the progression of dry season mainly due to decrease in propagating squall lines. \rightarrow Dry season precipitation controlled by non-local factors like moisture advection and squall lines

Research on convective transitions at PNNL

Overarching Science Question

- What are the key processes that control transitions in cloud populations?
- How do these processes and transitions collectively shape the evolution of the cloud populations?

Boundary layer disturbances and formation of shallow precipitating clouds

Microphysical processes and aerosols

Current activities

Transitions from shallow to deep convection and and upscale growth

Observational and high resolution modeling studies of

- Boundary layer rolls over SGP.
- Shallow to deep convection transitions over Amazon
- Stochastic cloud population modeling over Darwin
- Aerosol impacts on deep convection over SGP and Amazon

"A Bottom-up Approach to Improve the Representation of Deep Convective Clouds in Weather and Climate Models", Trapp, Lasher-Trapp, Nesbitt, UIUC

- Overarching objective: to understand how convective-storm updrafts, downdrafts, and cold pools are inter-related, and how these three convective components are modulated by external and internal factors
 - current focus is on MC3E-type environments, as on 23 May 2011
- Using idealized simulations, we find that environmental vertical wind shear exerts a large control on updraft-core width, especially for wind hodographs that are curved

increases in <u>updraft-core width</u> are accompanied by increases in <u>downdraft-core width</u> and increases in <u>cold-pool depth/area</u> this strong inter-relationship is modulated by the representation of microphysical processes

 Ongoing: microphysical-process assessment, observational analyses

Initiation of daytime moist convection in the Tropics

(mu

F. Couvreux, N Rochetin, F. Guichard, C Rio

Current studies :

- Still a challenge for models
- Obs & LES : role of surface heterogeneities
- Interaction between breeze and BL thermals
- Tracking of the cold pools in LES=> life cycle

Future work :

- Contrasting different tropical environment
- Identifying the impact of the shallow convection regime on the initiation of deep convection
- Modifying the triggering of the deep convection parameterization to take into account the surface heterogeneities

ARM meeting – March 2017

Diagnosing Raindrop Evaporation, Breakup & Coalescence

Objective

 Diagnose raindrop evaporation, breakup, and coalescence using the vertical change in rainfall parameters

Approach

- Vertical Decomposition Diagrams express rainfall parameters in logarithmic units:
 - q^{dB} : liquid water content N_t^{dB} : total number concentration D_q^{dB} : characteristic raindrop size
- Evaporation & accretion subtract or add mass as diagnosed by changes in q^{dB}
- Breakup & coalescence redistribute mass as diagnosed by compensating changes in N_t^{dB} and D_q^{dB}

Impact

- Vertical Decomposition Diagrams:
 - Useful for observations & models
- Identify mass- or size-modifying rain microphysics processes
 Happy π-day!

Liquid water content: $q = N_t \sum G(D_m, \mu; D)D^3 \Delta D$ [g m⁻³] Take the 10*logarithm of both sides:

 $q^{dB} = N_t^{dB} + D_q^{dB}$

Vertical Decomposition Diagram during stratiform rain over SGP.

C. R. Williams, 2016: Reflectivity and liquid water content vertical decomposition diagrams to diagnose vertical evolution of raindrop size distributions. *J. Atmos. Oceanic Technol.* **33**, 579-595, doi: 10.1175/JTECH-D-15-0208.1

Convective updraft microphysics—from MC3E to...Houston?

Problem

 simulations of convective updraft microphysics and dynamics remain very poorly constrained

MC3E findings

- polarimetric radar can very well be used to both locate and "see inside" updrafts [van Lier-Walqui et al. MWR 2016]
- surprising 20 May case evidence of warmtemperature ice multiplication similar to that commonly seen during HAIC-HIWC [Fridlind et al. ACPD 2017]

iLEAPS/GEWEX ACPC group proposal

- isolated updraft cell tracking study using polarimetric radars and groundbased aerosol measurements
- Houston region provides robust aerosol perturbation and dynamic susceptibility under onshore flow

Cloud-Resolving Model Intercomparison of a MC3E Squall

Line Case Led by Jiwen Fan, Adam Varble, and Hugh Morrison

Objectives

 Examine the dominant factors responsible for processes/factors leading to the large spread of CRM deep convection simulations and simulated aerosol impacts.

Approach

- Perform high-resolution (1 km) simulations with different microphysics schemes including 1-moment bulk, 2moment bulk, and bin microphysics.
- Employ the "piggybacking" approach to separate microphysical effects from the feedback to dynamics.

Working on: (1) the factors leading to underestimation of stratiform precipitation and area; (2) separating microphysical effects from the feedback effect on dynamics. Comparison on aerosol impact is planned.

Key points

- Simulations overestimate convective intensity, and underestimate stratiform precipitation and area.
- Large spread of updraft velocity corresponds with the spreads in both low-level pressure perturbation gradient mainly determined by cold pool intensity and buoyancy mainly by latent heating.
- Ice microphysics parameterization majorly contribute to the large spread of updraft intensity.

Aerosol-PBL-Convection Interactions Zhanqing Li

- How do aerosol and PBL interact ?
- How does the aerosol-PBL interaction affect convection ?

China: increasing in PBL but decreasing outside PBL caused by a suppression of PBL by aerosol. Dong et al. (2017, ACP)

Diurnal variations of heavy precipitation averaged for all cases over a decade in southern China under severe polluted and clean condition s Guo et al. 2016, JGR), Lee et al. (2016, JGR)

The ascent rate of moist convective updrafts

Hugh Morrison and John Peters

- Observational and modeling studies suggest a ratio of updraft top ascent rate and maximum vertical velocity $\alpha \sim 0.5$ to 0.6 (Turner 1973, Romps and Charn 2015).
- We derive an analytic theoretical expression for α as a function of two nondimensional buoyancy-related parameters *h* and *y*. This is done by extending Hill's analytic spherical vortex model (Hill 1894), which gives $\alpha = 0.4$, to include the effects of buoyancy.

Comparison of the analytic theoretical α (colored lines) with values directly calculated from 3D simulations using the CM1 model (colored circles), as a function of non-dimensional buoyancy parameters h and y.

h = ratio of buoyancy within thermal to the total buoyancy
y = ratio of buoyancy from thermal bottom to height of
maximum vertical velocity to the buoyancy within the thermal

Theoretical α well match the simulated α , including the dependence on y and h.

- We are interested in comparisons with observations (radar retrievals, other), for this and other recent theoretical work (Morrison 2016a,b,2017, Peters 2016).
 - Implications for convection schemes.

Convection Research - Jakob

Our goal is to use radar (and other) data to support the development of a fundamentally new framework for cumulus parametrization.

Kumar et al., 2013-2017

CMDV-RRM

- ACME will be run in RRM mode down to ~13km of over key ARM sites.
- Science Question: Can the dynamical core + convective scheme reproduce convective organization with the mesoscale parameterization turned off?

On the topic of vertical velocities

 we agree work needs to be understanding of the limitation of applicability of these retrievals. Need Blue-team Red-team aproach (apropos Leo Donner) IOP?????

Software!

- Open-source multi-Doppler collaboration between OU/NSSL, NASA Marshall and Argonne (in that order!). <u>https://github.com/tjlang/MultiDop</u>
- Thanks to the Monash group (Bhupendra Raut, Christian Jakob) we are close to a Py-ART based TITAN-like tracking code.

