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Controls of precipitation during the Amazonian dry season

Cloud Fraction Cumulus Days

* Challenging for GCM to accurately
simulate the rainfall during the
Amazonian dry season, which has a
significant impact on the rainforest.

« What factors control the daytime
transition from shallow-to-deep
convection? And what causes the number
of rain events to decrease during the dry
season?

* Use data from the GO-Amazon field
campaign and contrast the diurnal cycles
of days with and without precipitation.

 Study the progression of key variables il L
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* Precipitation days had higher moisture above the BL compared to cumulus days, while it

had lower LCL and surface sensible heat flux. 2>
« Decrease in precipitation during the progression of dry season mainly due to decrease in

propagating squall lines. >
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Pacific Northwest

Research on convective transitions at PNNL oo

Proudly Operated by Battelle Since 1965

Overarching Science Question _ Cloud population dynarmics |

» What are the key processes
that control transitions in cloud
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Microphysical \

i 2 Boundary layer processes
populatlons ) disturbances

and aerosols
and formation of -

» How do these processes and
shallow

transitions collectively shape
the evolution of the cloud
populations?

Transitions from shallow
C urre nt aCtiV|t|eS to deep convection and

and upscale growth

Observational and high resolution modeling studies of

. Boundary layer rolls over SGP.

=  Shallow to deep convection transitions over Amazon

»  Stochastic cloud population modeling over Darwin

=  Aerosol impacts on deep convection over SGP and Amazon



“A Bottom-up Approach to Improve the
Representation of Deep Convective Clouds in Weather
and Climate Models”, Trapp, Lasher-Trapp, Nesbitt, UIUC

* Overarching objective: to understand how convective-storm
updrafts, downdrafts, and cold pools are inter-related, and
how these three convective components are modulated by

external and internal factors
— current focus is on MC3E-type environments, as on 23 May 2011

* Using idealized simulations, we find that environmental
vertical wind shear exerts a large control on updraft-core
width, especially for wind hodographs that are curved
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increases in updraft-core width are accompanied
by increases in downdraft-core width and

increases in cold-pool depth/area
this strong inter-relationship is modulated by the
representation of microphysical processes

* Ongoing: microphysical-process assessment, observational

analyses




Initiation of daytime moist convection
in the Tropics
F. Couvreux, N Rochetin, F. Guichard,C Rio

(c) cumulative precipitation

Current studies : °

* Still a challenge for models £ / ;
* Obs & LES : role of surface heterogeneities e ]
* Interaction between breeze and BL thermals ;:I i w

* Tracking of the cold pools in LES=> life cycle
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Future work : 80 )
* Contrasting different tropical environment 70 (= |24
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* Identifying the impact of the shallow convection . |
regime on the initiation of deep convection B
* Modifying the triggering of the deep convection
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Diagnosing Raindrop Evaporation, Breakup & Coalescence

Obiecti Liquid water content: ¢ = N; Y. G(D,,,, u; D)D3AD [g m?3]
ective . .
5 | J Take the 10*logarithm of both sides:
® Diagnose raindrop evaporation,
g P P . qu — NtdB + DCC[lB [dB]
breakup, and coalescence using the
vertical change in rainfall parameters L I N,%® = 10log(N,) (d) o D, = 10l09(G(D,, 1) (dB)
Approach 2 )
® \Vertical Decomposition Diagrams E s 15l
express rainfall parameters in 5 .| 1
logarithmic units: *
dB. 1+ - 0.5 0.5
q“”: liquid water content | _ e | -
dB . 0 i I 0 S S S S B 0 S S S S B
N¢7 : total number concentration 15 10 - 20 25 30 35 40 45 -40 35 30 -25
dB e . o® (dB) N, (@B) D, (dB)
Dq : characteristic raindrop size d. N vs. D%, 13 profiles from 12:00:40 to 12:09:38 UTC on 20-May-2011
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® Fvaporation & accretion subtract or add
mass as diagnosed by changes in qu

® Breakup & coalescence redistribute
mass as diagnosed by compensating
changesin NZ? and DB
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Impact 20
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e \ertical Decomposition Diagrams: D, ™® = 10l0g(G(D,,, ) (B)
- Useful for observations & models Vertical Decomposition Diagram during stratiform rain over SGP.
- Identify mMass- or Size'mOdifying C. R. Williams, 2016: Reflectivity and liquid water content vertical decomposition
rain microphysics processes diagrams to diagnose vertical evolution of raindrop size distributions. J. Atmos.
Happy 7-day! Oceanic Technol. 33, 579-595, doi: 10.1175/JTECH-D-15-0208.1



Convective updraft microphysics—from MC3E to...Houston?

* Problem «iLEAPS/IGEWEX ACPC group proposal
« simulations of convective updraft microphysics « isolated updraft cell tracking study
and dynamics remain very poorly constrained using polarimetric radars and ground-
* MC3E findings based aerosol measurements
« polarimetric radar can very well be used to both * Houston region provides robust
locate and “see inside” updrafts aerosol perturbation and dynamic
[van Lier-Walqui et al. MWR 2016] susceptibility under onshore flow

« surprising 20 May case evidence of warm-
temperature ice multiplication similar to that
commonly seen during HAIC-HIWC
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Cloud-Resolving Model Intercomparison of a MC3E Squall - 40 &
Line Case Led by Jiwen Fan, Adam Varble, and Hugh Morrison o S R

Objectives
® Examine the dominant factors
responsible for processes/factors
leading to the large spread of CRM
deep convection simulations and
simulated aerosol impacts.

Approach
® Perform high-resolution (1 km)
simulations with different microphysics

schemes including 1-moment bulk, 2-
moment bulk, and bin microphysics.

Height(km)

e Employ the “piggybacking” approach to
separate microphysical effects from the
feedback to dynamics.

Working on: (1) the factors leading to
underestimation of stratiform precipitation
and area; (2) separating microphysical effects
from the feedback effect on dynamics.
Comparison on aerosol impact is planned.
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Key points

Simulations overestimate convective intensity, and
underestimate stratiform precipitation and area.

Large spread of updraft velocity corresponds with
the spreads in both low-level pressure perturbation
gradient mainly determined by cold pool intensity
and buoyancy mainly by latent heating.

Ice microphysics parameterization majorly
contribute to the large spread of updraft intensity.
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How do aerosol and PBL interact ?

* Aerosol-PBL-Convection Interactions

e How does the aerosol-PBL interaction affect convection ?
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MODIS AOD trend over China

10-year trend of AOD at
different altitude in a basin in
China: increasing in PBL but
decreasing outside PBL caused
by a suppression of PBL by
aerosol. Dong et al. (2017, ACP)
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Diurnal variations of heavy precipitation averaged tor all
cases over a decade in southern China under severe
polluted and clean condition s

Guo et al. 2016, JGR), Lee et al. (2016, JGR)



The ascent rate of moist convective updrafts

Hugh Morrison and John Peters

* Observational and modeling studies suggest a ratio of updraft top ascent rate and maximum
vertical velocity a ~ 0.5 to 0.6 (Turner 1973, Romps and Charn 2015).

 We derive an analytic theoretical expression for a as a function of two nondimensional
buoyancy-related parameters h and y. This is done by extending Hill’s analytic spherical
vortex model (Hill 1894), which gives a = 0.4, to include the effects of buoyancy.
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Comparison of the analytic theoretical a (colored lines) with
values directly calculated from 3D simulations using the CM1
model (colored circles), as a function of non-dimensional
buoyancy parameters h and y.

h = ratio of buoyancy within thermal to the total buoyancy
y = ratio of buoyancy from thermal bottom to height of
maximum vertical velocity to the buoyancy within the thermal

Theoretical a well match the simulated ¢,
including the dependence on y and h.

* We are interested in comparisons with
observations (radar retrievals, other), for

this and other recent theoretical work
(Morrison 2016a,b,2017, Peters 2016).

* Implications for convection schemes.
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Convection Research - Jakob

Our goal is to use radar (and other) data to support the development
of a fundamentally new framework for cumulus parametrization.
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CMDV-RRM

= ACME will be run in RRM mode down to
~13km of over key ARM sites.

= Science Question: Can the dynamical core
+ convective scheme reproduce convective e
organization with the mesoscale
parameterization turned off? -

37.2°N

37°N

On the topic of vertical velocities

= we agree work needs to be understanding of
the limitation of applicability of these
retrievals. Need Blue-team Red-team

Software!

= Open-source multi-Doppler collaboration
between OU/NSSL, NASA Marshall and
Argonne (in that order!).
https://github.com/tjlang/MultiDop

» Thanks to the Monash group (Bhupendra
Raut, Christian Jakob) we are close to a Py-
ART based TITAN-like tracking code.
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