

Proudly Operated by Battelle Since 1965

Use of Remote Sensing and In-Situ Observations to Develop and Evaluate Improved Representations of Convection and Clouds for the ACME Model

STEVE GHAN AND JIWEN FAN

Pacific Northwest National Laboratory Richland, Washington

Task leaders

M. Ovchinnikov, W. Gustafson, L. Riihimaki, P. Rasch, E. Roesler, S. Giangrande, D. Randall, V. Larson, X. Dong, X. Liu

Mesoscale Convective Systems

Motivation

- Mesoscale convective systems (MCSs) play important roles in the energy and water cycles.
- GCMs do not capture key MCS features.
- The Great Plains of the U.S. provide an excellent venue for studying continental propagating MCSs.

- GCM simulations including horizontal advection of key subgrid properties of convective cloud systems will simulate MCS propagation better
- MCS features, precipitation PDF and extremes, cloud phase, cloud radiative forcing, and aerosol-cloud interactions will be simulated much better with an improved treatment of ice nucleation and variable width of hydrometeor size distribution
- Parameterizations tested over the central U.S. and Amazon will simulate clouds better elsewhere

Objectives and deliverables

Proudly Operated by Baffelle Since 1965

Goal: Improve understanding and simulations of MCS features in large-scale models

Deliverables: Convection and cloud microphysics parameterizations for GCMs that yield better simulations of mesoscale phenomena

Strategy

- Use observations and cloudresolving and large eddy simulations to develop and evaluate cloud parameterizations.
- Evaluate parameterizations using ACME with a regionallyrefined grid centered over the ARM SGP site.
- Use additional global observational data to evaluate ACME uniform-grid simulations.

Development of convection parameterizations

Development of cloud microphysics parameterizations

Foundational work for evaluation

Pacific Northwest NATIONAL LABORATORY

Evaluation: configuration

Proudly Operated by Baffelle Since 1965

- ACME regionally-refined (RR) simulations
 - From 1 degree down to 1/4, 1/8, and 1/16 degrees
- ACME uniform-resolution (UR) simulations at 1 and 0.25 degrees
- Q3D MMF simulations
 1-mom cloud microphysics
 2-mom cloud microphysics
 - Spectral cloud microphysics

West-East CRM

channel

Evaluation: simulations

Cloud	Grid	Duration							Mode
parameterization	Configuration								
CLUBB-MG2	UR 1°	Overlapping periods	3	day	sims	for	month	long	Hindcast
CLUBB-MG2	UR 0.25°	Overlapping periods	3	day	sims	for	month	long	Hindcast
CLUBB-MG2	RR 0.25° to 10 km	Overlapping periods	3	day	sims	for	month	long	Hindcast
MMF-1MOM	UR 1° + 4 km	Overlapping periods	3	day	sims	for	month	long	Hindcast
Q3D-MMF-1MOM	UR $1^{\circ} + 4 \text{ km}$	Overlapping periods	3	day	sims	for	month	long	Hindcast
CLUBB-MG2	UR 1°	5 years							Free running
CLUBB-MG2	UR 0.25°	5 years							Free running
CLUBB-MG2	RR 0.25° to 10 km	5 years							Free running
MMF-1MOM	UR 1° + 4 km	5 years							Free running
Q3D-MMF-1MOM	UR 1° + 4 km	5 years							Free running
Q3D-MMF-ECPP-MG2	UR 1° + 4 km	5 years							Free running
Q3D-MMF-ECPP-SBM	UR 1°+ 4 km	1 year							Free running
Q3D-MMF-ECEP-MG2	UR 1°+ 4 km	1 year							Free running

► Focus on the evaluation of CLUBB, Q3D MMF, new MG2, and SBM.

Evaluation: focused properties

Pacific Northwest

Proudly Operated by **Battelle** Since 1965

- Low-level jet and cold pools
- Diurnal variation of convection over the U.S. Great Plains
- Propagation of convection
- Cloud microphysics
- MCS structure analysis
- Surface radiative fluxes, precipitation, temperature and boundary layer processes

Mesoscale Convective Systems

Evaluation: observational data

Proudly Operated by **Battelle** Since 1965

ARM field campaign data

- MC3E, PECAN, GoAmazon, and SPARTICUS
- **Meteorological properties**: sounding, radiosonde, variational analysis, Raman lidar, surface met.
- Convection and cloud properties
 - Retrievals from radars and lidars including KAZR, MMCR, CSPAR, RWP
 - Aircraft in-situ
 - Disdrometers

ARM long-term data at the SGP site

- Surface met.
- Cloud, convection, precipitation: RWP, disdrometers, ARSCL
- Radiation and precipitation: surface radiometer, rain gauge

Other sources

- NOAA NEXRAD
- NASA GOES, CERES, GPCP, TRMM, GPM
- NLDAS, Oklahoma Mesonet

Evaluation: global assessment

free running UR simulations at 1 and 0.25 degrees

- Standard ACME diagnostics
- Satellite datasets (NASA CERES cloud and radiation products, and TRMM, GPCP and GPM precipitation products) for other climate regimes such as tropical oceanic and continental convection
- Statistics of satellite data to evaluate MCS structures and other global features (e.g., MJO, ITCZ)

- Demonstrate a climate model evaluation framework that uses comprehensive observational datasets at different scales to understand mesoscale convective processes and evaluate representations of those processes in state-of-art climate models.
- Significantly improve ACME simulations

Mesoscale Convective Systems