

Selected Highlights from CARES

ARM
CLIMATE RESEARCH FACILITY

June 2 - 28, 2010

Rahul Zaveri, PNNL

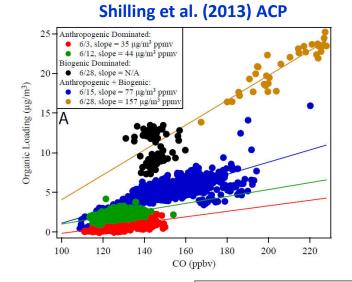
Campaign Objectives:

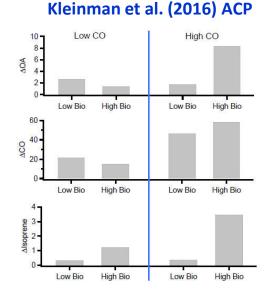
- Investigate Anthropogenic-Biogenic
 Interactions in SOA formation.
- Investigate black carbon (BC) mixing state evolution.
- Quantify the effects of aerosol ageing on aerosol optical and CCN activation properties.

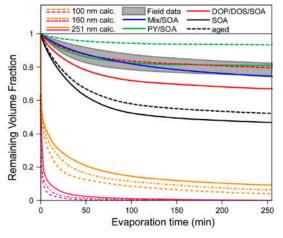
Output

San Francisco

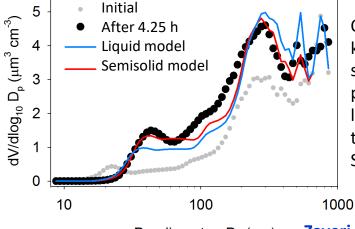
- Discovery of several aerosol process phenomena.
- 35 papers (~5 modeling) published so far, with more in the works.
- Inspired several laboratory campaigns to study these processes in controlled environments for developing model parameterizations.


SOA Formation


Proudly Operated by **Battelle** Since 1965


Enhanced SOA formation from Anthropogenic-Biogenic Interactions.

Setyan et al. (2012) ACP (c) $T0 \rightarrow T1$ transport ∆Org [µg/m³] 4 9 ∞ BVOCs > 2 ppb = 0.0531Slope = 92.9 ± 4.2 VOCs < 0.7 ppb = 0.259Slope = 36.0 ± 3.1 0.00 0.04 0.08 0.12 0.16

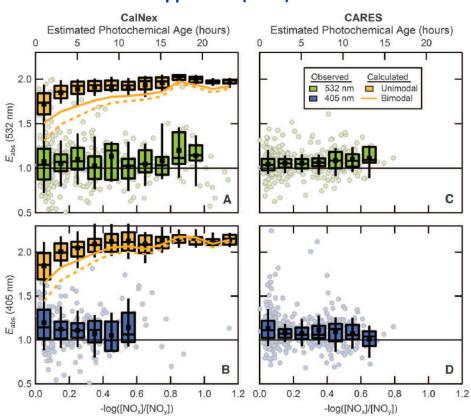

△CO [ppm]

Surprisingly slow evaporation kinetics suggests SOA is viscous semisolid.

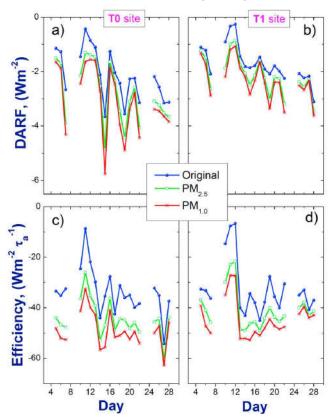
Observed growth kinetics also suggests particlephase diffusionlimited mass transfer in viscous SOA.

Vaden et al. (2011) PNAS

Dry diameter, D_n (nm)


Zaveri et al. In prep. 2

Aerosol Radiative Properties


Proudly Operated by **Battelle** Since 1965

Cappa et al. (2012) Science

These observations inspired the "Soot Aerosol Aging Study (SAAS)" – a collaborative lab campaign at PNNL to understand the lack of absorption enhancement.

Kassianov et al. (2012) GRL



Unexpectedly large contribution of coarse mode (sea salt) to aerosol radiative forcing.

Coarse mode organics

Proudly Operated by Ballelle Since 1965

Surprising reactivity of coarse mode sea salt chloride with weak organic acids

Laskin et al. (2012) JGR