Cloud Resolving Model Radar SIMulator (CR-SIM): Latest Updates and Applications

Mariko Oue and Pavlos Kollias

Stony Brook University

Aleksandra Tatarevic

McGill University
Simulation Overview

CRM data (e.g., WRF, DHARMA) with various microphysics scheme
- 2-moment (Morrison et al., 2005, 2009, Milbrandt and Yau, 2005a,b, and Thompson et al. 2007)
- The spectral bin microphysics (Fan et al., 2012)

CR-SIM

Radar (scanning/profiling) simulator
1) T-matrix scattering calculation
   • For cloud water, cloud ice, rain, snow, graupel and hail for each size.
   • A fixed orientation for every elevation angles (0° -90°)
   • 3, 5.5, 9.5, 35, and 94 GHz
2) Calculate particle size distributions according to a selected microphysics scheme for each model hydrometeor type
3) Resample data to radar coordinate

Ceilometer simulator
1) Calculate droplet size distribution
2) Compute single particle extinction and backscattering cross sections for spherical droplets at a wavelength of 905 nm.
3) Estimate first cloud base height at each column

Backscatter (including attenuation), extinction, lidar ratio, first cloud base

Micro Pulse Lidar (MPL) simulator
1) Calculate droplet and cloud ice size distributions
2) Compute particle extinction and backscattering cross sections for spherical droplets and ice at a wavelength of 353 or 532 nm.
3) Calibrate by aerosol and molecule backscattering

Backscatter (including attenuation), extinction, lidar ratio

Zhh, DV, SW, Zvv, Zdr, Kdp, Ah, Av, LDRh for each model hydrometeor type

Update!
1. Compare with the original model output to address potential uncertainties in observational data.
2. Compare with real observational data for LES evaluation.

**Cloud Model Simulations**

**Virtual Observational Products**

1. Cloud Resolving Model Radar SIMulator (CR-SIM)

**Real Observational Data**

**Multi sensor product**
- Virtual ARSCL

**Single radar product**
- Best estimates of cloud properties (cloud fraction)
- Polarimetric observables

**Multi radar product**
- 3DVAR Wind retrieval
Virtual ARSCL from Multi Sensor Simulations

LES Water content

KAZR reflectivity

Virtual ARSCL cloud mask

Cloudy gridbox

Ceilometer backscatter & cloud base

MPL observed backscatter

Detection flag

X: Cloud base height

X distance [km]

X: Cloud base height

X distance [km]

X distance [km]

LES Water content

KAZR reflectivity

Virtual ARSCL cloud mask

Cloudy gridbox

Ceilometer backscatter & cloud base

MPL observed backscatter

Detection flag

LASSO LES for 2015/06/27 at SGP
Future Work

• Implement interfaces to other CRMs & different microphysics schemes
  ➢ Predicted particle properties (P3) microphysics scheme (Morrison and Milbrandt, 2015)
  ➢ RAMS with double moment (Walko et al., 1995; Meyers et al., 1997; Saleeby and Cotton, 2004; Saleeby and van den Heever, 2013)
  ➢ SAM with double moment

• Code optimization to incorporate into real-time LES.

• Latest software packages are available at:
  ➢ CR-SIM:
  ➢ Radar resampling: