Cloudphase Study

Maximilian Maahn

Gijs de Boer, Rosa Gierens, Tristan L'Ecuyer, Greg McFarquhar, Matt Shupe, Zhien Wang, Damao Zhang

And many more!

Maximilian Maahn

Cooperative Institute for Research in Environmental Sciences

Objectives of the study

- How can we bring the different datasets and measurement techniques together to get a broader, global(?) perspective of phase partitioning?
- Do different methodologies give similar results?
- Start with comparing different methodologies and platforms using observations overlapping in time and space (i.e. campaigns)
- Recycle existing data sets
- Efforts should result in a paper this summer

Maximilian Maahn

Cooperative Institute for Research in Environmental Sciences

What is this discussion about?

- Give opportunity to join
- Include more data sets?
- How to filter the data sets?
- How to make comparison as consistent as possible?
- What quantities for comparison?
- Please ask questions any time!

Maximilian Maahn

Cooperative Institute for Research in Environmental Sciences

How to define cloud phase? How to measure cloud phase?

- Phase Frequency
- Ratio of Water Contents
- Ratio of Water Paths

- Satellite
- Ground based remote sensing
- In situ

Maximilian Maahn

Cooperative Institute for Research in Environmental Sciences

Definition & Methods

	Phase Frequency	Water Path Ratio	Water Content Ratio
In situ	(✓)	×	1
Ground based remote sensing	\checkmark	1	1
Satellite	\checkmark	(✔)?	×
Model (?)	\checkmark	1	1
		L	Y

Only mixed phase?

Best definition depends on question?

Maximilian Maahn

Cooperative Institute for Research in Environmental Sciences

Compare with...?

	Cloud top temperature	Turbulence	Aerosol properties (?)	Humidity	More?
ln situ	(√)	(🗸)	\checkmark	\checkmark	
Ground based remote sensing	(✓)*	1	(✓)	(✓)*	
Satellite	\checkmark	×	(√)	×	
Model (?)	\checkmark	1	\checkmark	\checkmark	

* From model data

Maximilian Maahn

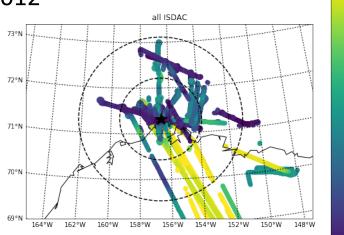
Cooperative Institute for Research in Environmental Sciences

Methods/data sets

Maximilian Maahn

Cooperative Institute for Research in Environmental Sciences

CloudSat


Maximilian Maahn

Cooperative Institute for Research in Environmental Sciences

ISDAC in situ

- Indirect and Semi-Direct Aerosol Campaign (ISDAC)
- Stratocumulus ice clouds
- April 2008 in Alaska
- Convair 580 with in situ instruments
- Phase classification Jackson et al 2012

6000

5000

4000

3000

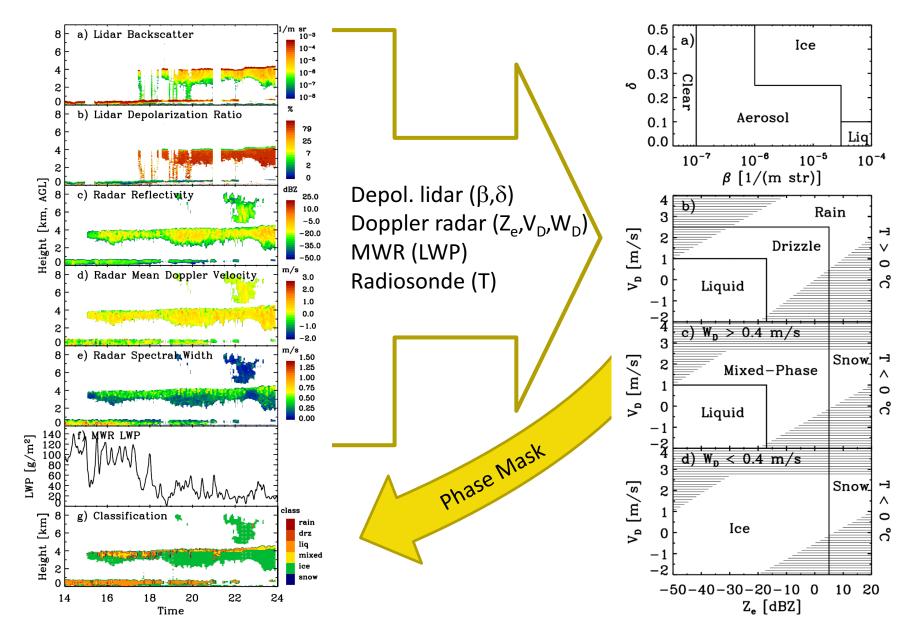
2000

1000

- Closer than 200 km to Barrow
- Single layer clouds prevailed for certain flights
- No random sampling of clouds
- Unknown whether cloud precipitates or not

McFarquhar

Cooperative Institute for Research in Environmental Sciences


UNIVERSITY OF COLORADO BOULDER and NOAA

Maximilian Maahn 14 January 2015

A ground-based multisensor cloud phase classifier Shupe 2007

ISDAC ground based radar

- Based on Shup-Turner algorithm
- Rain/Snow/Drizzle discarded (in pixel space, not column!)
- April 2008
- Radar calibration?

CLOUDNET data

- . Radar + lidar + microwave radiometer + model \rightarrow cloud classification
- · IWC retrieved from radar (Hogan et al. 2006) \rightarrow IWP
 - For JOYCE calculation of Z-IWC (35 GHz MIRA radar) log 10 (iwc [g/m^3]) = 0.000242Z[dBZ]T [degC]+0.0699Z[dBZ]±0.0186T[degC]±1.63
 - For Ny-Ålesund (94 GHz RPG cloud radar) log 10 (iwc [g/m³]) = 0.00058Z[dBZ]T [degC]+0.0923Z[dBZ]±0.00706T[degC]±0.992
 - LWP retrieved from microwave radiometer
 - Cloud top temperature from model
 - JOYCE: COSMO-EU 1.3.2011-28.5.2014, ECMWF IFS (29.5.2014-8.3.2016), GDAS (9.3.2016-3.1.2017)
 - Ny-Ålesund: GDAS data (global data assimilation system)
 - temporal resolution ~3 hours, vertical resolution changing with height from ~200 m to ~2
 km , 20 vertical levels

How does that compare to Matt's classification?

Maximilian Maahn

Cooperative Institute for Research in Environmental Sciences

CLOUDNET data

Only including cases with....

- single cloud layers with geom. depth < 1 km
- \rightarrow mainly thin liquid/mixed phase clouds and patches of cirrus
- no liquid precipitation or drizzle is detected
- IWP only included when retrieval flagged as "reliable"

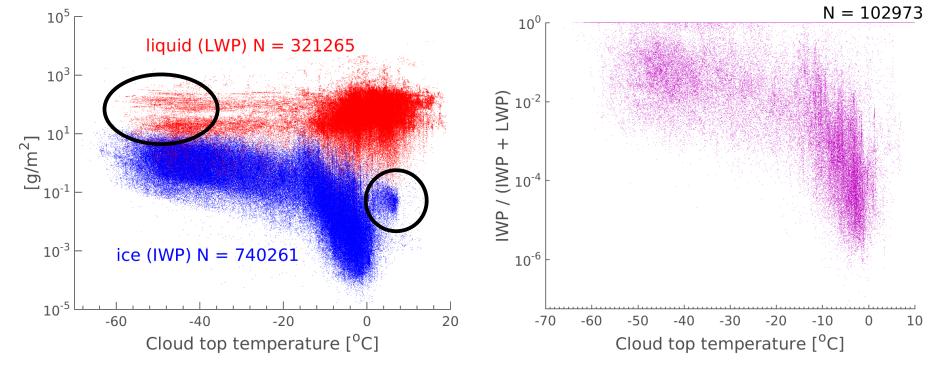
Maximilian Maahn

Cooperative Institute for Research in Environmental Sciences

CLOUDNET data

Only including cases with....

- single cloud layers with geom. depth < 1 km
- \rightarrow mainly thin liquid/mixed phase clouds and patches of cirrus
- no liquid precipitation or drizzle is detected
- IWP only included when retrieval flagged as "reliable" For Ny-Ålesund: LWP is only analyzed when presence of cloud droplets is detected by active instruments (to exclude cases when MWR sees liquid earlier due to broader beam)

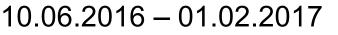


Maximilian Maahn

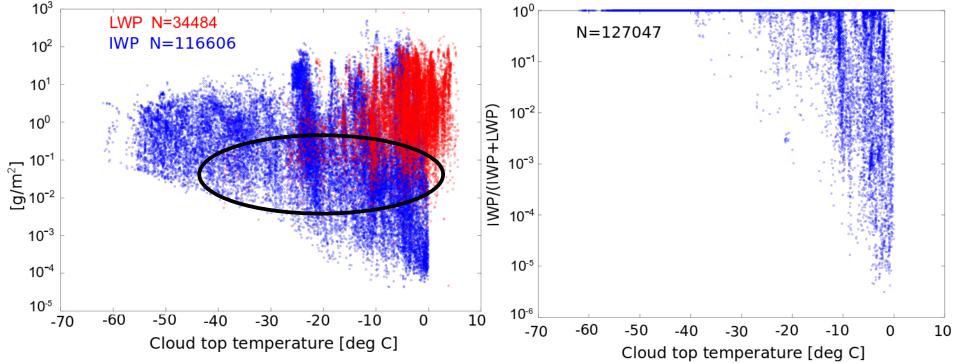
Cooperative Institute for Research in Environmental Sciences

JOYCE 01.03.2011 – 03.01.2017

 \rightarrow model issue?


Cooperative Institute for Research in Environmental Sciences

UNIVERSITY OF COLORADO BOULDER and NOAA


Maximilian Maahn

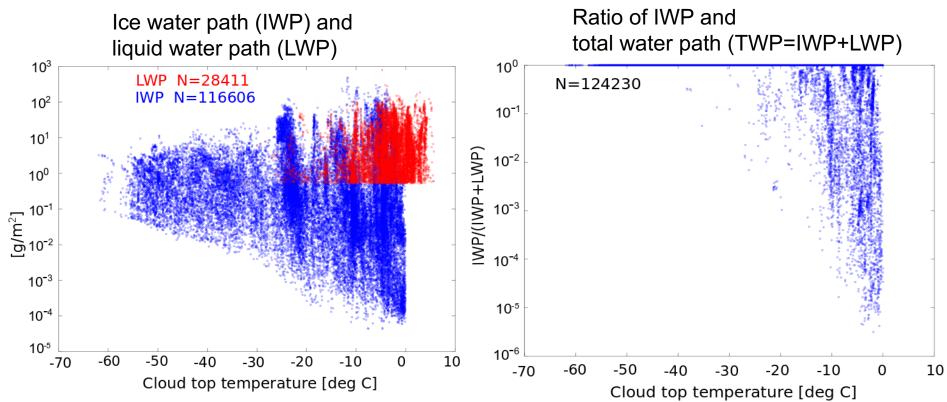
Ny-Ålesund

Ice water path (IWP) and liquid water path (LWP)

Ratio of IWP and total water path (TWP=IWP+LWP)

- small values of LWP below the detection limit of the MWR
- positive values of cloud top temperatures for IWP due to relatively low accuracy of GDAS

CIRES


Maximilian Maahn

Cooperative Institute for Research in Environmental Sciences

Ny-Ålesund (filtered version)

10.06.2016 - 01.02.2017

- . Filter small values of LWP< 0.53 g/m^2
- (calculated from clear sky days mean(LWP)+3*STdev(LWP)=0.53 g/m^2)
- IWP data with positive cloud top temperatures are removed

Cooperative Institute for Research in Environmental Sciences

Maximilian Maahn

Results

Maximilian Maahn

Cooperative Institute for Research in Environmental Sciences

Filter data set

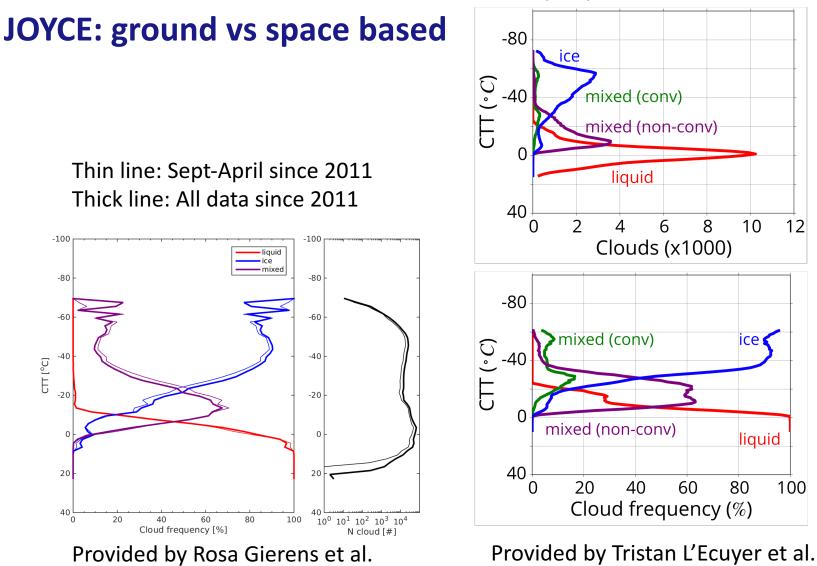
Consistent filtering of the data sets is crucial!

	Precipitation	No. of cloud layers	Used Radius	Cloud Top Heights (?)	??
ISDAC in situ	Only non- precipitating part considered	separated	200 km		
ISDAC Ground based	Only non- precipitating part considered	separated	-		
Jülich CloudNet	Precipitating clouds REMOVED	Single layer (for now)	-		
CloudSat	Precipitation included into classification		2.5° x 2.5° (for now)		

Maximilian Maahn

Cooperative Institute for Research in Environmental Sciences

Compare frequency



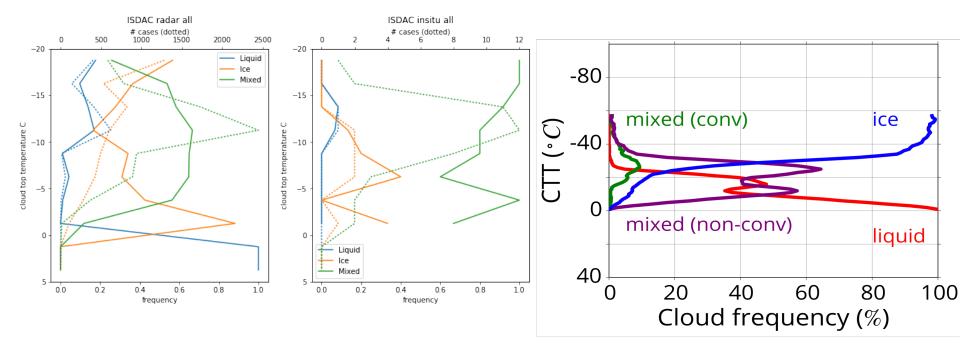
Maximilian Maahn

Cooperative Institute for Research in Environmental Sciences

Sept-April 2010/11

Cooperative Institute for Research in Environmental Sciences

UNIVERSITY OF COLORADO BOULDER and NOAA



12

Maximilian Maahn

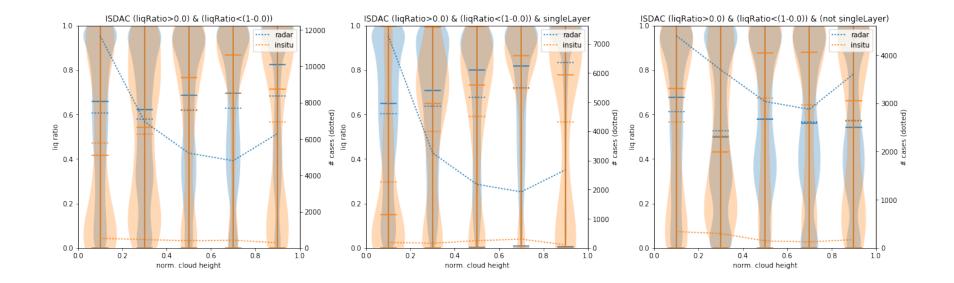
RES

ISDAC radar vs in situ vs satellite

Maximilian Maahn

Cooperative Institute for Research in Environmental Sciences

Compare Contents

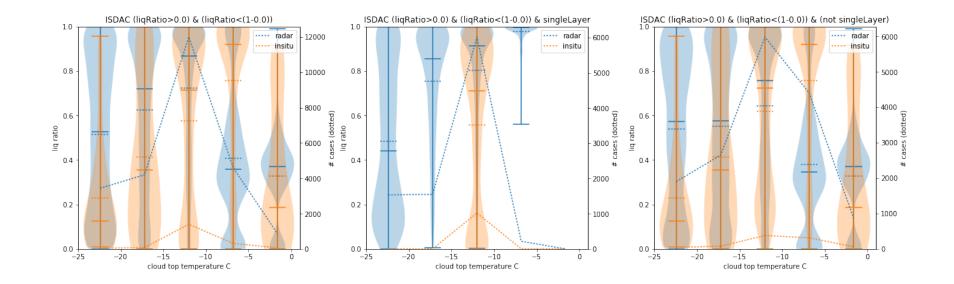


Maximilian Maahn

Cooperative Institute for Research in Environmental Sciences

ISDAC radar vs in situ: normalized cloud height

Only mixed phase clouds

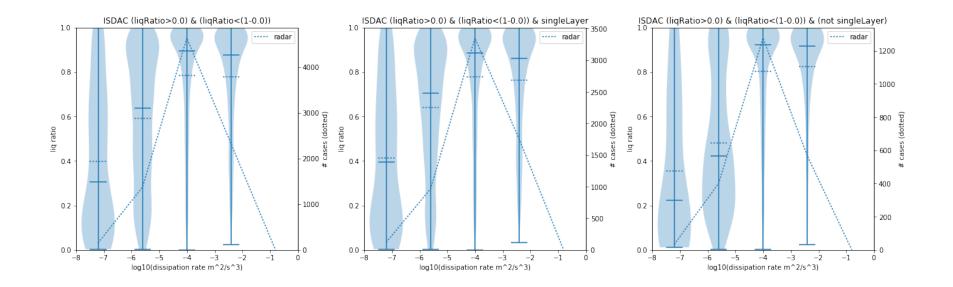


Maximilian Maahn

Cooperative Institute for Research in Environmental Sciences

ISDAC radar vs in situ: cloud top temperature

In situ: probably positive temperature bias



Maximilian Maahn

Cooperative Institute for Research in Environmental Sciences

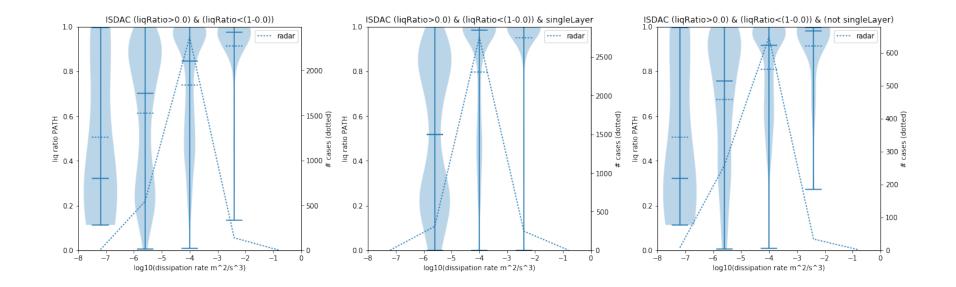
ISDAC radar vs in situ: turbulence/EDR

In situ: data mostly below sensitivity threshold of 1e-3 m²/s³

Maximilian Maahn

Cooperative Institute for Research in Environmental Sciences

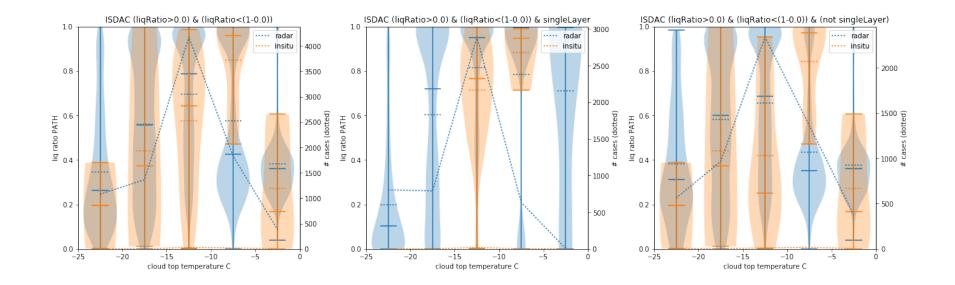
Comparing Paths



Maximilian Maahn

Cooperative Institute for Research in Environmental Sciences

ISDAC radar vs in situ: turbulence/EDR



Maximilian Maahn

Cooperative Institute for Research in Environmental Sciences

ISDAC radar vs in situ: cloud top temperature

In situ: probably positive temperature bias

Maximilian Maahn

Cooperative Institute for Research in Environmental Sciences

Filter data set

Consistent filtering of the data sets is crucial!

	Precipitation	No. of cloud layers	Cloud Top Heights (?)	Used Radius
ISDAC in situ	Only non- precipitating part considered	Separated (flight based)	-	200 km
ISDAC Ground based	Only non- precipitating part considered	separated	-	<100 m
Jülich CloudNet	clouds with precip or drizzle REMOVED	Single layer clouds	-	<100 m
CloudSat	Precipitation included into classification	-	-	2.5° x 2.5°

Maximilian Maahn

Cooperative Institute for Research in Environmental Sciences

Additional Data sets?

- Thin line between enhancing study and getting distracted
- Recycling of existing data sets
- For mid-latitudes: long data sets required to get sufficient CloudSat coverage, but Cloudnet implemented at many sites!
- ISDAC: expand ground based data beyond ISDAC?
- AWARE: Ground based data not processed yet
- SGP: Lots of convective events
- Ny-Ålesund Svalbard: rather short data set, no in situ data (yet)
- Include one GCM? Or Reanalysis?

Maximilian Maahn

Cooperative Institute for Research in Environmental Sciences

What was this discussion about?

- Give opportunity to join
- Include more data sets?
- How to filter the data sets?
- How to make comparison as consistent as possible?
- What quantities for comparison?

Maximilian Maahn

Cooperative Institute for Research in Environmental Sciences

