

Anomaly Detection for ARM Radiometers using Machine Learning Algorithms

LAURIE GREGORY^A, JEFFERY MITCHELL^A, RICHARD WAGENER^A, LYNN MA^A AND LAURA RIIHIMAKI^B

^aBrookhaven National Laboratory; ^bPacific Northwest National Laboratory ARM/ASR PI Meeting, Tysons, Virginia

- ARM Cimel Sun Photometer
- Mentorship Daily data review- daunting task
- Why Machine Learning offers a solution
- Machine learning workflow and methodology
- Machine Learning results
- ARM wide applications- a coordinated effort
 Future Directions

ARM Radiometer- Cimel Sun Photometer

- The CIMEL Sun Photometer (CSPHOT) is a multi-spectral automatic sun and sky scanning radiometer that measures the direct solar Sensor head irradiance and sky radiance at the Earth's surface.
- Key Primary Measurement: Aerosol Optical Depth (AOD)
- Deployed at all ARM past and current sites 16
- Part of NASA AERONET program 100's of Cimel's deployed operationally
- Sensitive to the environment

(rain, snow, clouds, extreme temperature, etc..)

3

Robot Arm

CLIMATE RESEARCH FACILITY

CSPHOTs at ARM sites

CSPHOT in Antarctica

CSPHOT Data Quality Review-A Daunting Task

- Many CSPHOTs at a variety of ARM sites and conditions around the world
- Essential that ARM Instrument Mentors provide accurate and consistent data quality reports for all ARM data
- Daily data plot reviews are currently performed by humans- time consuming, inefficient, and higher risk of inaccuracies
- Many tools to review: The ARM Instrument Data Delivery Tracking tool, DQR's, DQA's, DQPR's, comparisons to other instruments, DQ Plot Browser, OSS, ARM DQ Explorer, ENGs, site reports

Review process would be improved with automation techniques

The use of machine learning applications has exploded over the past several years

- Movie / Purchase Recommendation Engines (Netflix, Amazon)
- Computer Vision and Image Recognition (Facebook)
- Self-driving cars (Google, Uber)
- Malware Detection
- Fraud Detection
- Financial Market Prediction
- > Natural Language Processing (Siri)

Why not try machine learning to detect ARM instrument anomalies as well

U.S. DEPARTMENT OF

Identify training sets for Supervised Learning

Identify Patterns in the Data.

Here we looked for patterns that are associated with known DQ issues. We **train the model** to distinguish between data where instrument is operating normally and data when there are problems.

Filter Degradation

AERONET website: AOD plot

Operating Normally

Training Set

U.S. DEPARTMENT OF

9

Identify features that describe the data patterns that we see (e.g. a curve in the data indicating an obstruction) in mathematical terms for the training set.

- A total of 57 features are extracted and monitored as a time series, such as
 - Angstrom exponents which are sensitive to deviations between channels (which could indicate a channel is out of alignment)
 - Coefficients from a fit to a curve of the data (indicating daily curvature)
- Data affected by clouds are screened and removed from the training set
- The time series for each feature is plotted. Plots can be viewed interactively, saved to a file, or both
- At the end, a summary of days with feature deviations is produced.

Example of how features can be used to identify problems, like a spider web

Days where spider web was obstructing the instrument.

Choosing an Algorithm - The Random Forest Model

- A random forest model is an ensemble method that builds a set of decision trees from subsets of data and subsets of features. The final result is the average of the results from all of the trees.
- A random forest model is chosen for the following reasons:
 - It generalizes well.
 - The input data does not need to be scaled or processed.
 - Results are easy to interpret and provide information on the nature of the problem.

Image showing decision tree from www.analyticsvidhya.com\

Impressive Machine Learning Results

- Model incorporates many features of instrument key measurements simultaneously
- "Trained" for periods when instrument operated normally
- Deviations against training fit indicate anomalies
- Validated using existing Data Quality Reports
- Faster, more sensitive than human eyes, and automated
- One two-year run took only 30 seconds
- Currently testing model in operational mode and running model at other sites

A Coordinated ARM-wide Effort

Working with AOS Mentors at BNL: combining images data with data from multiple instruments (Poster #101)

> Working with Xiao Chen at LLNL on Uncertainty Quantification (see talk at breakout session)

Working with Laura Riihimaki and Connor Flynn to apply the algorithms on other instruments – MFRSR shadowband misalignment problem (Poster #136)

- Continue applying anomaly detection to other ARM instruments
- Automatically create data quality reports
- Could create open source Python application through GitHub for scientists
- Generalized data quality tools for DQ office
- Integrate into the ARM Development Environment (ADI)

- Machine Learning is currently being used in ARM.
- Efficient and effective
- Coordinated effort across ARM
- Can provide more automation in the ARM Facility

Acknowledgements

I would like to acknowledge Alice Cialella for her support

Come visit our posters

Tuesday night, A2, Poster #101 Identifying the Influence of Local Source Emissions on the Regional Representativeness of AOS Measurements using Machine Learning

Wednesday night, B2, Poster #136 Anomaly Detection for ARM Radiometers using Machine Learning Algorithms

Breakout session on Wednesday 1:30 – 3:30 Beyond QA: Using New Techniques to Quantify Retrieval Quality and Uncertainty (Potomac) Conveners: Laura Riihimaki, Evgueni Kassianov, Connor Flynn, Laurie Gregory

References

References:

Adams, B., L. Gregory, R. Wagener, "Automatically detecting typical failure signatures in Cimel Sun-photometer data to improve data quality", Poster presented at New York Scientific Data Summit, NYU, New York, August 2-5, 2015 Alexandrov, M.D, et al, "Optical depth measurements by shadow-band radiometers and their

uncertainties", M.D. Alexandrov et al., APPLIED OPTICS _ Vol. 46, No. 33 _ 20 November 2007.

Image References:

Machine Learning workflow images: http://www.datascienceassn.org/content/machinelearning-workflow. Instrument and application images: www.arm.gov Random Forest Image: https://www.analyticsvidhya.com/blog/2016/04/complete-tutorialtree-based-modeling-scratch-in-python

