Time-dependent versus singular ice nucleation schemes: Estimated impact on mixed-phase stratiform clouds in ModelE3

Ann Fridlind¹, Andrew Ackerman¹, Daniel Knopf², Peter Alpert³, Susanne Bauer^{1,4}, Jan Perlwitz^{1,4} ¹NASA GISS, ²Stony Brook Univ., ³Paul Scherrer Institute, ⁴Columbia Univ.

With contributions from Paul DeMott/CSU Sarah Brooks/TAMU upported by DOE ASR Program (PI Fridlind) NASA Radiation Sciences Program

Liquid-phase low cloud fraction

- Preliminary version of ModelE3 (Ackerman, Cheng, Del Genio, Kelley)
 - turbulent mixing [Bretherton and Park 2009]
 - large-scale cloud fraction for liquid [Smith 1990], ice [1999]
 - large-scale two-moment microphysics [Gettelman and Morrison 2015]

Mixed-phase low cloud occurrence frequency at NSA

• Preliminary version of ModelE3

- immersion freezing [Bigg 1953] of cloud and rain drops
- contact freezing [Young 1974] of cloud drops
- aerosol freezing with prescribed cloud ice concentration (100/L) and RHI_{crit} following Karcher and Lohmann [2002]
- convective detrainment glaciated at 0°C

ModelE3 gas and aerosol-phase chemistry

Bauer et al., Atmos. Chem. Phys. 8, 6603-6635, 2008 Bauer et al., Atmos. Chem. Phys., 10, 7439-7456, 2010 Gao et al. Geosci. Model Dev., 10, 751-764, 2017

ModelE3 off-line INP calculations

- feldspar N_{INP}(T) @ 600 mb using an active site scheme [cf. Atkinson et al. 2013]
- inform MATRIX single dust type

ModelE3 SCM versus LES

- M-PACE case [Klein et al. 2009]
 - reasonable behavior
 - liquid-phase boundary layer is big challenge
 - can we make a simple model to test likely response to differing ice nucleation schemes?
 - e.g. Vali and Snider [2015] parcel model

Simplest mixed-phase stratiform cloud?

Field	Observation	Cloud Top	Cloud Temp. (C)		Path $(g m^{-2})$		Conc. (cm^{-3})	
Campaign	Period (UTC)	Height (m)	Top	Base	Liquid	Ice	Drops	Ice
SHEBA	7 May 1998	500	-20°	-18°	5-20	0.2-1	200	~ 0.0005
M-PACE	9–10 Oct. 2004	1000	-16°	-9°	110-210	8-30	40	~ 0.01
ISDAC	26 April 2008	800	-15°	-11°	10-40	2-6	200	~ 0.001

SHEBA

M-PACE

ISDAC

Source: Fridlind and Ackerman [submitted chapter, Ed. C. Andronache]

Simplest mixed-phase stratiform cloud?

• 1D model with only N_i and INP properties evolving

- quasi-stationary well-mixed BL
- liquid-phase not strongly desiccated by ice present
 - ice approximately independent of liquid [cf. Yang et al. 2014]
- quasi-stationary ice size distribution [Fridlind et al. 2012]

2 L⁻¹ singular immersion INP [cf. Fridlind et al. 2012]

• 1D model with only N_i and INP properties evolving

- initialize INP properties profile (size distribution, activation parameters)
- predict INP activation, turbulent mixing, cloud top entrainment
- predict N_i formation, sedimentation, turbulent mixing

1D model @ 10 h

~10 cm⁻³ following classical nucleation theory

- Classical nucleation theory-based model [Savre and Ekman 2015]
 - evolving PDF of contact angles (initially Gaussian, one θ and J(θ) per particle)
 - inputs derived from aerosol single-particle data rather than Counter-Flow Diffusion Chamber (CFDC)

10 cm⁻³ following classical nucleation theory

compared with Savre and Ekman [2015]

- ABIFM immersion INP model [Knopf and Alpert 2013]
 - fit to CFDC measurements from M-PACE, ISDAC
- slow sustained ice formation [cf. Morrison et al. 2005]
- negligible loss of INP [cf. Westbrook and Illingworth 2013]
- recycling would be negligible [cf. Solomon et al. 2015]

0.2 L⁻¹ following classical nucleation theory

compared with Savre and Ekman [2015]

- 0.2/L 1-um-diameter INPs (like singular)
- consistent with CFDC measurements (but not single-particle measurements?)
- weaker ice formation, substantial loss of INP [cf. Fridlind et al. 2012]

Summary

- Simple 1D model of mixed-phase BL cloud
 - tool to predict ModelE3 N_i and INP evolution to first order
 - contrast to Vali et al. [2015], Field et al. [2014]
 - rigorous constraint of time-dependent schemes requires
 - known size distributed INP surface area and properties
 - merging disparate lab and field measurement data
 - closure study?
- Future work
 - add MATRIX aerosol parameter initiation and evolution
 - study potential ice nucleation treatments
 - cirrus

What is the INP size distribution?

LES results

