Boundary Layer Ambient Aerosols on Ascension Island during LASIC: Biomass Burning Season

Allison C. Aiken Los Alamos National Laboratory

Paquita Zuidema University of Miami

Art Sedlacek, Stephen Springston, Thomas Watson, Chongai Kuang, Janek Uin Brookhaven National Laboratory

Connor Flynn Pacific Northwest National Laboratory

Manvendra Dubey Los Alamos National Laboratory

Poster Plenary Session

Tysons Corner, VA March 20, 2018

LA-UR-18-22105

Layered Atlantic Smoke Interactions with Clouds (LASIC)

- PI: Paquita Zuidema (Thurs. Plenary and Breakout)
- Southern Africa and Biomass Burning (BB)
 - Largest source of BB Emissions Globally
 - Land Clearing Wood and Grassland Fires
 - BB Season is from June to November

• LASIC Measurements

- Ascension Island in the Southern Atlantic Ocean
- June 2016 Oct. 2017
- Two Southern African BB Seasons

ARM Mobile Facility (AMF1 with AOS and MAOS) at LASIC

- Aerosols and Trace Gases in the Aerosol Observing System (AOS) and Mobile AOS (MAOS)
 - Surface: Particle number, size, optical properties, refractory Carbon (rC) content, non-refractory chemical composition, hygroscopicity and water uptake properties, Nitrogen Oxides, Combustion tracers (CO, SO₂), Ozone, Volatile Organic Compounds
 - Column: Sunphotometer

Atmospheric Profiling

 Microwave, High Frequency, and 3-Channel Radiometers

Clouds

- Lidar, Cloud Radars (K- and W-band), Total Sky Imager, Ceilometer
- Radiometers
- Surface Meteorology

2016 Biomass Burning Season

- June October, 2016
 - 5 months of 1 minute data
 - Submicron aerosol (<1 µm diameter)
 - Largest plumes in August
 - Backtrajectory analysis for the three plumes in August (Adebiyi/U. Miami)
- Aerosol Number, CO, and Particulate Absorption
 - Similar trends in the time series
- 3 Wavelength Absorption
 - Spans the visible range
 - Signals reach 30 Mm⁻¹ in August
 - Peak Biomass Burning season in Southern Africa

LASIC August Biomass Burning Plume Optical Properties

- South African Biomass Burning Plume
 - Plumes detected that correlate with column (e.g.
 AERONET data) Zuidema et al., GRL submitted
- Optical Properties
 - Absorption Angstrom Exponent
 - (AAE: 464/648 nm)

$$\frac{\beta_{\lambda-}}{\beta_{\lambda^{o}}} = \left(\frac{\lambda}{\lambda_{0}}\right)^{-AE}$$

- Indicator for chemical composition
- Values ~1 indicate refractory carbon while >1 indicate absorbing organics (absorption in the UV)
- Organics and refractory Carbon dominate the submicron mass

- Low Single Scatter Albedo (SSA)

- Comparison within measurement uncertainties (Biomass Burning/breakout)
- ~0.78 at 464 nm
- ~0.72 at 648 nm

$$SSA = \underline{\beta_{sca}}_{(\beta_{sca} + \beta_{abs})}$$

@AllisonAikenPhD

LASIC Biomass Burning Organic Aerosol Comparison to Laboratory and Near-field Biomass Burning Data

- X: Single Scatter Albedo (SSA)
 - Values from 0 1
 - Bare refractory Carbon ~ 0.4
 - Scattering Organics ~ 1.0 (non-absorbing)
- Y: Absorption Angstrom Exponent (AAE)
 - Refractory Carbon ~ 1.0
 (λ independent)
 - Absorbing organics > 1

 (higher in the UV)
- Ambient US Forest Fires
 - SSA ~ 0.85 0.95
 - AAE ∼ 1 − 4
- LASIC
 - Lower SSA (0.81 \pm 0.03) and AAE (1.04 \pm 0.10)
 - Refractory Carbon dominates, no evidence for organic absorption

LASIC Biomass Burning Plume Chemical Composition

- Aged Biomass Burning S. Zhou et al., ACPD 2016
- Bulk Chemical Information
 - Refractory Carbon and Organics dominate

10

8/5/16

8/12/16

8/19/16

8/26/16

Organic Aerosol in LASIC Biomass Burning Plumes

- Non-refractory Organic Aerosol is the largest chemical component
 - Over half of the PM₁ mass
 - Measured by aerosol mass spectrometry
 - Can determine more information from mass spectral signatures and tracer ions

Organics are highly oxygenated

- f(44: Oxygen content) vs f(43: Hydrogen content) - Ng et al., ACP, 2011
- Don't exhibit primary hydrocarbon-like content
- Resemble low volatility oxygenated organics

• No evidence of primary biomass burning ion

- -f(60) Levoglucosan fragment ion
 - Cubison et al., ACP, 2011

f(60) Biomass Burning marker (Levoglucosan)

@AllisonAikenPhD

LASIC Biomass Burning Organic Aerosol Comparison to 2017 US Wildfire Data

Summary and Future Work

• South African Biomass Burning Plume Analysis

- Significant aerosol number and mass concentrations within the Boundary Layer measured by the ARM Aerosol Observing System (AOS)
- Organics and refractory Carbon dominate the submicron mass
 - Organics are highly oxygenated (aged/low volatility) with no significant primary ions/tracers
 - AAE indicates most absorption is from refractory Carbon (lack of UV absorption from Organics)

Continued and Future work

- In depth comparison of Biomass Burning season aerosol with background conditions
- Comparison with NASA-ORACLES and ATom (aging and differences in source emissions)
- Mass closure studies, e.g. size distribution analysis
- Gas-phase tracer and precursor analysis
- Positive Matrix Factorization of Organic Aerosol

• Continued need for in situ aerosol data

- Sample regional and source-specific differences
- Capture dynamic processes and uncertainties
- Closure studies

Acknowledge funding sources and thank you for your attention!

