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Traditional Bulk Modeling Methods

Define Classes of Ice:
Small ice snow graupel

° owater droplets

Rate equations used to transfer particles among
classes.



- Bulk Habits: Gradual Transitions —
Vapor Growth
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- Bulk Habits: Gradual Transitions —

Riming

Transition state modeled

Minor axis collects liquid first

Collection efficiencies: Theory/data

Density added during growth
derived from lab measurements

Jensen and Harrington (2015)
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- Bulk Spheroidal Habit Model —

Prognostic Ice Variable Shapes
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Jensen et al. (2017)



- Bulk Spheroidal Habit Model —

Prognostic Ice Variable Shapes
Planar-Nucleated Columnar-Nucleated

Oblate Spheroid =™ — Prolate Spheroid
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Jensen et al. (2017)



- Habit Evolving Microphysics -

Prognostic Variables:

(1) Mass mixing ratio

(2) Number mixing ratio

(3) Effective density (volume mixing ratio)

(4) Aspect ratio (aspect ratio*volume mixing ratio)

Ice Formation: homogeneous, heterogeneous nucleation
secondary ice production (rime-splintering)
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Control simulation captures basic features:

leading convective line, transition zone,

extended stratiform precipitation region
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- Squall-line Case (2007) -

Many models have trouble reproducing these observed
features (Morrison et al., 2015 and others)

What microphysical processes led to the simulated
structure?

How does predicting shape and effective density contrast
with traditional methods with more abrupt
transitions in particle characteristics?
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- Microphysical Processes -
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- Microphysical Processes -
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- Microphysical Processes -
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- Microphysical Processes -

Ice Mass Flux Out Of Planar Ice
Convective Region
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Planar Ice: Large mass flux, small sizes and fall speeds

=> Composes the front and rear anvils
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- Microphysical Processes -
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- Microphysical Processes -

Ice Mass Flux Out Of Columnar Ice

Convective Region
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Columnar Ice: Smaller mass flux, fall speeds 2-4 m/s
=> Advected over transition zone, source of

Stl’Gt’lfOrm precipitation Jensen et al. (2018)



- Squall-line Case (2007) -

Convective precipitation: melted small hail from planar ice
Anvil composed of small, nearly isometric planar crystals

Stratiform region composed of

Small rimed columns advected from updraft

Planar crystals formed and grown in mesoscale updraft



- Squall-line Case (2007) -

Convective precipitation: melted small hail from planar ice
Anvil composed of small, nearly isometric planar crystals

Stratiform region composed of
Small rimed columns advected from updraft
Planar crystals formed and grown in mesoscale updraft

Aggregates had minor influence on microphysics
Rime splintering and evolving density had major impacts



- Squall-line Case (2007) -

Without rime-splintering: Larger particles, greater fall speeds
Fills in transition zone with precip
Stratiform precipitation disappears

Without evolving density: Mimic traditional schemes (snow)
Threshold used -> 900 kg m= for D < 100 microns
100 kg m3 for D > 100 microns

Squall line development depends on chosen threshold

Cold pool development slowed by abrupt fall speed change



- MC3E May 20 Case -

Simulated structure similar to 2007, but have in-situ observations
Bulk Habit Model
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- MC3E May 20 Case -

Simulated structure similar to 2007, but have in-situ observations
Bulk Habit Model Observations: Stratiform Region
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- Aspect Ratio Projections (MC3E) -

Probability Density
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- Comparing with Observed Aspect Ratio Projections -

Probability Density
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- Aspect Ratio Projections (MC3E) -

Probability Density
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- Aspect Ratio Projections (MC3E) -

Probability Density
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- Are We Misrepresenting Aggregates? -

Gradient Descent Method
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- Summary -

Simulations corroborate earlier theories that the size spectrum
and fall speed of hydrometeors advected out of the convective
updraft are critical for transition zone/stratiform precipitation.

Riming and rime density evolution appear to be important.

Evolving density: Lose sensitivity to snow -> graupel transfer
function as in traditional schemes.

Comparisons with observation are best if columns nucleate below
-20C or by aggregates.

The model likely misrepresents aggregates, as observations
suggests that an ellipsoidal representation is accurate.



