IDENTIFYING AND UNDERSTANDING UNCERTAINTIES IN A POLARIMETRIC SIMULATOR

B. DOLAN, T. MATSUI, S. RUTLEDGE, J. BARNUM, W.-K.TAO, T. IGUCHI, S. LANG

ASR PI MEETING

19 MARCH 2018 TYSON'S CORNER

Science Questions Driving development of our Simulator

- How do polarimetric radar signatures contrast in convective cores between land and ocean?
 - E.g. MC3E vs. TWP-ICE
 - What are the uncertainties of the radar retrievals?
- How well can sophisticated microphysics represent the land-ocean contrast of polarimetric signals and retrievals?
 - E.g. Bulk vs. Bin microphysical schemes
- What are the relative roles of thermodynamics and aerosols in convective invigoration, for land and ocean regions?
- How is DSD variability related to cloud microphysical processes?
- What is the impact of DSD assumptions on precipitation microphysics CRMs?

POLARRIS: POLArimetric Radar Retrieval and Instrument Simulator

- Framework to put the model data and radar observations into direct comparison
- POLARRIS-F
 - Calculate the polarimetric radar moments from scattering calculations using model consistent microphysical assumptions + user assumptions + radar geometry
- iPOLARRIS
 - Apply the same retrievals to models output as radar analysis
 - HID, polarimetric rainfall estimation, dual-Doppler wind retrieval

CHARACTERIZATION OF UNCERTAINTIES

Uncertainties in assumptions at the forward model level

• Particle axis ratios, canting angles

Model microphysics scheme assumptions (e.g. 4ICE vs. SBM)

- Hydrometeor definitions
- Rime fraction /density
- PSD
- Propagation to the simulated variables
- Propagation to retrievals (e.g. HID)
- Uncertainties in retrieval algorithms
 - E.g. Hydormeteor Identification
 - MBFs
 - Fuzzy logic scoring (DOMINANT type)

CHARACTERIZATION OF UNCERTAINTIES: FORWARD MODEL

	RY11	PU17	MA18
Liquid (cloud & Rain)	$A_{xis} = 0.9951+0.0251*D-0.03644*D^2 +0.005303*D^3-0.0002492*D^4$ [Brandes et al. 2011] Type: quasi-Gaussian (Θ _{mean} = 0°, σ=1°)		
lce	A _{xis} = 2.0		
(column)	Type: random		
lce	A_{xis} = 0.35		
(plate)	Type: quasi-Gaussian (Θ_{mean} = 0°, σ =10°)		
lce (dendrite)	$A_{xis} = 0.125 \label{eq:Axis}$ Type: quasi-Gaussian ($\Theta_{mean} = 0^\circ, \ \sigma = 10^\circ)$		
Snow aggregate	A _{xis} = 0.8 Type: quasi-Gaussian (Θ _{mean} = 0°, σ=40°)	A _{xis} = 0.75 Type: quasi-Gaussian (Θ _{mean} = 0°, σ=20°)	A _{xis} = 0.592 Type: quasi-Gaussian (Θ _{mean} = 10°, σ=10°)
Graupel	A _{xis} =max(0.8, 10.2*D)	A _{xis} = 0.75	A _{xis} = 0.814
	Type: quasi-Gaussian	Type: quasi-Gaussian	Type: quasi-Gaussian
	(Θ _{mean} = 0°, σ=40°)	(Θ _{mean} = 0°, σ=10°)	(Θ _{mean} = 20°, σ=10°)
Hail	A _{xis} max(0.8, 10.2*D)	$A_{xis} = 0.75$	$A_{xis} = min(0.725, 0.897 - 0.0008D - 0.0002D^2)$
	Type: quasi-Gaussian	Type: quasi-Gaussian	Type: quasi-Gaussian
	(Θ _{mean} = 0°, σ=40°)	($\Theta_{mean} = 0^\circ, \sigma = 10^\circ$)	($\Theta_{mean} = 90^\circ, \sigma = 10^\circ$)

• Different sets of scattering assumptions (axis ratio, canting angle distribution), none reproduce the observations

Assuming a single axis ratio (for a given hydrometeor type) across all size significantly impacts the breadth of retrieved K_{dp} and Z_{dr} values

CHARACTERIZATION OF UNCERTAINTIES: MICROPHYSICAL SCHEME

CHARACTERIZATION OF UNCERTAINTIES: MICROPHYSICAL SCHEME

CHARACTERIZATION OF UNCERTAINTIES: IMPACT ON RETRIEVALS

Assumptions can impact the amount of hail, graupel, and aggregates in the retrievals

CHARACTERIZATION OF UNCERTAINTIES: RETRIEVAL INPUT

HID Membership Beta Functions

- How much does the resulting HID change based on MBF modification?
- Using C-band radar observations from a tropical location (CPOL Darwin) and mid-latitude location (CSAPR MC3E), all variables for all ten hydrometeor types were adjusted

CHARACTERIZATION OF UNCERTAINTIES: RETRIEVAL INPUT

- Decrease AGG turn into graupel
- Are these changes more or less than assuptions in forward model or microphysics scheme?

UNCERTAINTIES: CHALLENGING BUT CRITICAL

- A polarimetric radar simulator such as POLARRIS has many layers of complexity
- Although it is nearly impossible to quantify all sources of uncertainty, it is critical to identify and understand them
- These come at several levels:
 - Model microphysical parameterizations (assumed PSD, density, sizes, hydrometeor classes)
 - Forward model assumptions (canting angle, axis ratio, density, particle types)
 - Applied Retrievals (e.g. hydrometeor identification, rainfall retrievals, wind retrieval)
- Does one dominate over the others?
- Can we reduce any areas of uncertainty?
 - More observations of particle DSDs, fall modes, shapes, densities, etc.
- How to quantify and represent in final 'products'?

