In situ validation of cloud radar-based retrievals of ice hydrometeor shapes

Oliktok Point AMF3 facility (October 2016)

Matrosov, S., C. Schmitt, M. Maahn, and G. de Boer

AMF3 Scanning ARM Cloud Radar (SACR2) at Oliktok Point

A fully polarimetric dual-frequency (K_{a} and W bands) SACR-2 was deployed at the AMF3 facility (Oliktok Point, AK)

SACR-2 measures: $\mathrm{Z}_{\mathrm{e}}, \mathrm{V}_{\mathrm{D}}, \mathrm{LDR}, \mathrm{Z}_{\mathrm{DR}}, \rho_{\mathrm{hv}}$, (CDR can be calculated from the measured variables)

A remote sensing method to infer ice hydrometeor shapes from SACR2 measurements

NCAR Video Ice Particle Sampler (VIPS) attached to a tethered balloon

Oliktok Point, 21 October 2016 case study

K_{a}-band SACR HRHI at $\mathrm{az}=135^{\circ}, 00: 22$ UTC

Inferring shape parameters of atmospheric ice particles expressed as aspect ratios, r, from SACR2 measurements

21 October 2016

Ground-based MASC estimates of particle aspect ratios (21 October 2016)

Examples of VIPS images of particles (21 October 2016)

VIPS estimates of PSDs (21 October 2016)

VIPS estimates of aspect ratios as a function of particle size (21 Oct 2016)

Intercomparisons of particle aspect ratios from radar retrievals (green and red) at 0.3 km VIPS (black squares) at ~ TBS altitudes, and ground-based MASC data (cyan line)

More details: Matrosov et al. 2017, J. Atmos. Oceanic Technol. doi:10.1175/JTECH-D-17-0111.1

TBS is a convenient platform for deploying in situ microphysical probes allowing for close colocation of direct and remote (e.g., radar-based) estimates of cloud and precipitation microphysical parameters

It would be useful if ice microphysical probes are deployed during more ARM TBS flights

