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Problem Statement

» ARM produces a large amount of data (>1PB).
B More than can be looked at by hand
» ARM data quality is a key priority
Machine learning is a promising approach to tackle the problem

» Supervised machine learning has challenges with training data for
detecting instrument malfunctions.

» Unsupervised learning potentially sidesteps this problem.
B Exploit statistical relations between parameters in the data.

v

» This talk will discuss our recently proposed approach to address data
quality using machine learning.
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» Machine learning :

B solve problems by analyzing data without explicitly programming in solutions
— often referred to as learning from the data

» Broadly split into 2 categories (Supervised and Unsupervised):
» Supervised learning fits a model to relate input data, to labeled output
data
B Giveny, X, fit y=f(x)
B This requires creating a labeled training set relating the input and the outputs.
B This can be very expensive and time consuming.
» Unsupervised learning
B Fit y=f(x) given only x.
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» We plan to utilize a variation on unsupervised clustering.
» Break data up into N statistically different groups

B Not predefined, but data driven
» Clusters represent statistical modes of operational returns.
» Use in cluster fits to detect anomalies.

» One of the largest challenges in unsupervised clustering:
B You can'’t force certain clusters.

B You can always find N clusters. Doesn’t mean they are statistically
independent.
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AMF2 MAGIC KAZR Toy Example i
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» Unsupervised clustering to detect statistically
independent clusters.

B “typical operating regimes” Radar Data
» Data Clustering for initial pointwise
classification Vanal " { - }
B Clustering on a graph/b-matching C'f;SF')fr'gjgs"" GRSl | Model Classification
» Region based aggregation Training Set nggregate
B Convert point estimates into time periods. eeetian C'aszifli;jittisn to
» Human-in-loop review to tweak hyper- Determination
parameters and verify. | - { pata Qualiy Offce }
» Envisioned as a way to make data quality cucr [l | ond MentorReview

Correct
Classification

review more effective — focus on likely DQRlssued |

problematic times.
» Test set will use the Oliktok KAZR radar
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» Interviews for the position have concluded
» September 2018: Preliminary implementation completed.

» December 2018: Evaluation of performance, and DQ table completed for
testing on OLI KAZR. ADI integration if requested.

» May 2019: Work with ARM staff to transition code to infrastructure.
Preparation of technical report.

ARM
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» The source code required to run the analysis set up on ARM’s Stratus
system.

» Results of running model on a period of Oliktok KAZR data. This will be in
the form of an evaluation dataset released to the ARM ADC.

» A technical report describing and assessing the implemented algorithm.
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