

Proudly Operated by Baffelle Since 1965

Unsupervised Machine Learning Models to Predict Anomalous Data Quality Periods

JOSEPH C HARDIN¹, NITIN BHARADWAJ¹, MAHANTESH HALAPPANAVAR¹, ADAM THEISEN

¹ Pacific Northwest National Laboratory ² University of Oklahoma

ARM/ASR Science Meeting, 2018

2018 ARM/ASR PI Meeting

Problem Statement

- ARM produces a large amount of data (>1PB).
 - More than can be looked at by hand
- ARM data quality is a key priority
- Machine learning is a promising approach to tackle the problem
- Supervised machine learning has challenges with training data for detecting instrument malfunctions.
- Unsupervised learning potentially sidesteps this problem.
 - Exploit statistical relations between parameters in the data.
- This talk will discuss our recently proposed approach to address data quality using machine learning.

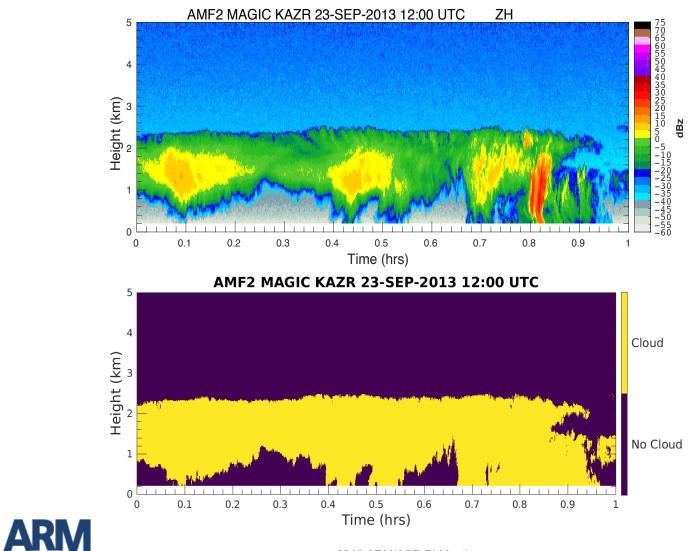
Machine Learning

Machine learning :

- solve problems by analyzing data without explicitly programming in solutions
 often referred to as learning from the data
- Broadly split into 2 categories (Supervised and Unsupervised):
- Supervised learning fits a model to relate input data, to labeled output data
 - Given y, x, fit y=f(x)
 - This requires creating a labeled training set relating the input and the outputs.
 - This can be very expensive and time consuming.
- Unsupervised learning
 - Fit y=f(x) given only x.

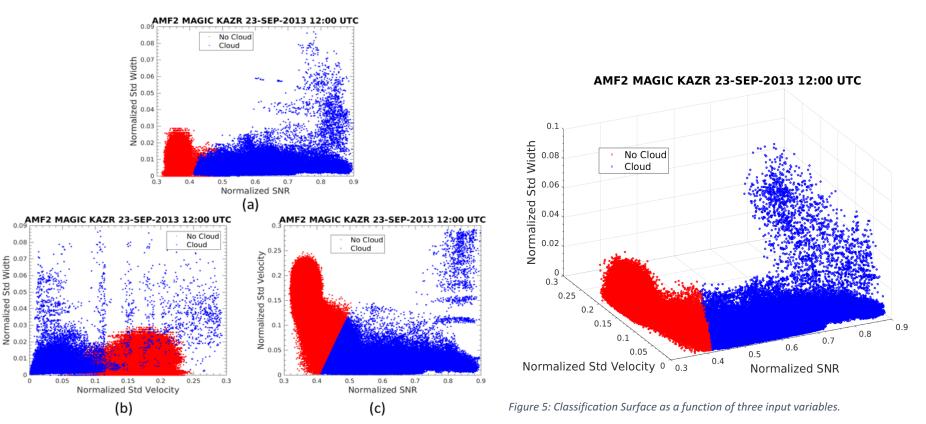
Unsupervised Machine Learning

Proudly Operated by **Baffelle** Since 1965


- We plan to utilize a variation on unsupervised clustering.
- Break data up into N statistically different groups
 - Not predefined, but data driven
- Clusters represent statistical modes of operational returns.
- Use in cluster fits to detect anomalies.
- One of the largest challenges in unsupervised clustering:
 - You can't force certain clusters.
 - You can always find N clusters. Doesn't mean they are statistically independent.

Proudly Operated by Battelle Since 1965

AMF2 MAGIC KAZR Toy Example



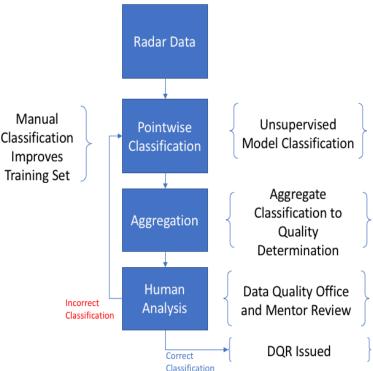
CLIMATE RESEARCH FACILITY

Proudly Operated by Battelle Since 1965

AMF2 MAGIC KAZR Toy Example

ARM CLIMATE RESEARCH FACILITY

0.08


0.01

Proudly Operated by Battelle Since 1965

Proposed Method

- Unsupervised clustering to detect statistically independent clusters.
 - "typical operating regimes"
- Data Clustering for initial pointwise classification
 - Clustering on a graph/b-matching
- Region based aggregation
 - Convert point estimates into time periods.
- Human-in-loop review to tweak hyperparameters and verify.
- Envisioned as a way to make data quality review more effective – focus on likely problematic times.
- Test set will use the Oliktok KAZR radar

Timeline

- Interviews for the position have concluded
- September 2018: Preliminary implementation completed.
- December 2018: Evaluation of performance, and DQ table completed for testing on OLI KAZR. ADI integration if requested.
- May 2019: Work with ARM staff to transition code to infrastructure. Preparation of technical report.

Questions?

Proudly Operated by **Battelle** Since 1965

Deliverables

- The source code required to run the analysis set up on ARM's Stratus system.
- Results of running model on a period of Oliktok KAZR data. This will be in the form of an evaluation dataset released to the ARM ADC.
- A technical report describing and assessing the implemented algorithm.

