Challenges from the aerosol modeling community

Matt West and Nicole Riemer

University of Illinois at Urbana-Champaign
March 21, 2018

With apologies to Tim Onasch, Art Sedlacek, and Ernie Lewis

Process
Readiness Level

Requirements for a process to be at a certain PRL

Example of a process at a certain PRL
gas
CCN activation

| Extensive validation performed against
 observational data, uncertainty quantified | inorganic
 gas |
| :---: | :---: | :---: |
| Process implemented in a regional or global | |
| model; Process-level verification | |
| activation | |

Model-measurement challenges

1. What is the aerosol state?
2. How does it evolve?
3. How is it mapped to measurements?

Dilution rate is about $2.6 \mathrm{~L} / \mathrm{min}$.

How does PartMC work?

Sample particle diameters

Particles are vectors:
$[3,0]$
$[7,0]$
$[0,2]$
$[0,5]$

1. What is the aerosol state?

- Per-particle vectors
- particle $=\left[m_{\mathrm{BC}}, m_{\mathrm{SO} 4}, m_{\mathrm{H} 20}, \ldots, D_{\text {core }}, d_{\mathrm{f}}, \ldots\right]$
- Mass of each species
- But what is a "species"? Organics?
- Also morphology (core diameter, inclusions, fractal dim, charge, ...)
- Even for non-particle-resolved models
- Even when a model can't resolve some details, measurements of these are still important
- Important for later re-modeling or re-processing

Time series of measured total number concentration on $8 / 28$

All the specifications that are needed for the model

2. How does the state evolve?

- Well-characterized inputs
- Having to fit parameters is possible but painful
- All parameters along the way measured
- Gas, environment, walls, fluxes
- Unmeasured time-varying parameters are a nightmare (e.g., variable dilution rates)
- State measured periodically

$$
\begin{aligned}
& \phi_{\text {mix }}=\frac{N_{\text {mix }}}{N_{\mathrm{BC}}+N_{\text {mix }}} \\
& \phi_{\text {mix }, \mathrm{SI}}=\frac{N_{\text {mix }, \mathrm{SI}}}{N_{\mathrm{BC}, \mathrm{SI}}+N_{\text {mix } \mathrm{SI}}}
\end{aligned}
$$

Fraction of mixed particles
Fraction of mixed particles in the size range $200 \mathrm{~nm}<D_{\text {opt }}<450 \mathrm{~nm}$

The green dashed line is supposed to be comparable with the green dots.

- Updated analysis: uncoagulated lag times $-0.4 \mu \mathrm{~s}$ to $+0.4 \mu \mathrm{~s}$
- Original analysis: uncoagulated lag times $-0.4 \mu \mathrm{~s}$ to $+1.6 \mu \mathrm{~s}$
- More data in the SP2 signal (bimodal scattering peaks) could better resolve this

3. How does aerosol state map to measurements?

- Inverse: measurement \Rightarrow state
- Needed for initial condition
- Key question: Can we recover a list of particle vectors from the measurements?
- Forward: state \Rightarrow measurement

Why aerosol standards?

- Solve the mapping problems
- Inverse: we measured y, what is really there?
- Forward: we have x, what should we measure?
- Well understood mappings:
- Mobility diameter \Leftrightarrow mass-equiv diameter
- Poorly understood mappings:
- SP2 lag times
- Single particle mass specs ("qualitative")

Mapping to aerosol state

- How do we reconcile different instruments?
- Important to get complete state
- Given SP2, AMS, SPLAT in CARES - how do we initialize a model? What are the particles?
- We want full state: per-particle mass fractions
- With error bars!

Mixing State FG: Connections

	Theory/ Metrics	PRM	SP2	Micros- copy	SP mass spectro- metry	Bulk measure- ments	Remote sensing	RM/ GCM
Theory/ Metrics		high	medium	medium	low	low	low	low
PRM	high	medium	medium	medium	high	low	low	
SP2	medium	medium	medium	medium	high	low	low	
Micros- copy	medium	medium	medium	medium	medium	low	low	
SP mass spetro- metry	low	medium	medium	medium	medium	low	low	
Bulk measure- ments	low	high	high	medium	medium		high	medium
Remote sensing	low	low	low	low	low	high	high	
RM/ GCM	low	low	low	low	low	medium	high	

