Challenges from the aerosol modeling community

Matt West and Nicole Riemer

University of Illinois at Urbana-Champaign

March 21, 2018

With apologies to Tim Onasch, Art Sedlacek, and Ernie Lewis

Process Readiness Level	Requirements for a process to be at a certain PRL	Example of a process at a certain PRL		
PRL 5:	Extensive validation performed against observational data, uncertainty quantified	inorganic gas CCN		
PRL 4:	Process implemented in a regional or global model; Process-level verification	activation		
PRL 3:	Quantitative process model: Set of ODEs with known rate functions	BC aging SOA		
PRL 2:	Qualitative description of process: When and where does it occur? What are the reactants and the products?	formation		
PRL 1:	Phenomenon observed in the field	nucleation		

Model-measurement challenges

- 1. What is the aerosol state?
- 2. How does it evolve?
- 3. How is it mapped to measurements?

How does PartMC work?

1. What is the aerosol state?

- Per-particle vectors
 - particle = $[m_{BC}, m_{SO4}, m_{H20}, ..., D_{core}, d_{f}, ...]$
 - Mass of each species
 - But what is a "species"? Organics?
 - Also morphology (core diameter, inclusions, fractal dim, charge, ...)
- Even for non-particle-resolved models
 - Even when a model can't resolve some details, measurements of these are still important
 - Important for later re-modeling or re-processing

Time series of measured total number concentration on 8/28

All the specifications that are needed for the model

Quantity	Variable name	Value	Source	
Barrel height	$h_{ m B}$	0.8954 m	Aerodyne	
Barrel inner diameter	D_{B}	$0.5715~\mathrm{m}$	Aerodyne	
Barrel sedimentation area	$A_{ m S}$	$0.2565 \ { m m}^2$	calculated	
Barrel wall area	A_{D}	2.1206 m^2	calculated	
Barrel volume	$V_{ m B}$	0.2297 m^3	calculated	
Filling inflow for AS particles	$R_{ m AS}$	$3 \ \ell \min^{-1}$	Aerodyne	
Filling inflow for RB particles	$R_{ m RB}$	$3 \ \ell \min^{-1}$	Aerodyne	
Dilution outflow during Period 1	$R_{ m dil_1}$	$6 \ \ell \min^{-1}$	$R_{\rm AS} + R_{\rm RB}$	
Dilution outflow during Period 2	$R_{ m dil_2}$	$2.5 \ \ell \min^{-1}$	Aerodyne	
Relative humidity	RH	10%	Aerodyne	Fitted or
Temperature	T	293 K	Aerodyne	
Pressure	p	10^5 Pa	Aerodyne	guessed
Fractal dimension	d_{f}	2.3	Tian et al. [3]	
Wall loss parameter	$k_{ m D}$	0.06 m	Tian et al. [3]	
Wall loss parameter	a	0.25	Theoretical,	
			Bunz and Dlugi	
			[1], Fuchs [2]	
Radius of primary particles	R_0	10 nm	assumed	*
Volume filling factor	f	1.43	Tian et al. [3] 😕	
Total number conc.	$N_{ m tot}$	dynamic		
Number conc. of AS particles	$N_{ m AS}$	$11,075 \ {\rm cm}^{-1}$	Eq. (1)	
Number conc. of RB particles	$N_{ m RB}$	$2,312 \text{ cm}^{-1}$	Eq. (1)	Uncertain
Filling rate for AS particles	$\lambda_{ m AS}$	$2.177 \times 10^{-4} \text{ s}^{-1}$	Eqn. (2)	
Filling rate for RB particles	$\lambda_{ m RB}$	$2.177 \times 10^{-4} \text{ s}^{-1}$	Eqn. (2)	
Dilution rate during Period 1	$\lambda_{ m dil_1}$	$4.354 \times 10^{-4} \ {\rm s}^{-1}$	Eqn. (2)	
Dilution rate during Period 2	$\lambda_{ m dil_2}$	$1.814 \times 10^{-4} \text{ s}^{-1}$	Eqn. (2)	
Wall loss	L_{wall}	dynamic	Eqn. (4) in Tian	
			et al. [3]	
Coagulation loss	$L_{ m coag}$	dynamic	Eqn. (1) Tian	
			et al. [3]	

2. How does the state evolve?

- Well-characterized inputs
 - Having to fit parameters is possible but painful
- All parameters along the way measured
 - Gas, environment, walls, fluxes
 - Unmeasured time-varying parameters are a nightmare (e.g., variable dilution rates)
- State measured periodically

$$\phi_{\rm mix} = \frac{N_{\rm mix}}{N_{\rm BC} + N_{\rm mix}}$$
$$\phi_{\rm mix,SI} = \frac{N_{\rm mix,SI}}{N_{\rm BC,SI} + N_{\rm mix,SI}}$$

Fraction of mixed particles

Fraction of mixed particles in the size range $200 \text{ nm} < D_{\text{opt}} < 450 \text{ nm}$

- Updated analysis: uncoagulated lag times -0.4 μ s to +0.4 μ s
- Original analysis: uncoagulated lag times -0.4 μs to +1.6 μs
- More data in the SP2 signal (bimodal scattering peaks) could better resolve this

3. How does aerosol state map to measurements?

This is what we have to work with

- Inverse: measurement \Rightarrow state
 - Needed for initial condition
 - Key question: Can we recover a list of particle vectors from the measurements?
- Forward: state \Rightarrow measurement

Why aerosol standards?

- Solve the mapping problems
 - Inverse: we measured y, what is really there?
 - Forward: we have *x*, what should we measure?
- Well understood mappings:
 - Mobility diameter \Leftrightarrow mass-equiv diameter
- Poorly understood mappings:
 - SP2 lag times
 - Single particle mass specs ("qualitative")

Mapping to aerosol state

- How do we reconcile different instruments?
 - Important to get complete state
 - Given SP2, AMS, SPLAT in CARES how do we initialize a model? What are the particles?
- We want full state: per-particle mass fractions
 With error bars!

Mixing State FG: Connections

	Theory/ Metrics	PRM	SP2	Micros- copy	SP mass spectro- metry	Bulk measure- ments	Remote sensing	RM/ GCM
Theory/ Metrics		high	medium	medium	low	low	low	low
PRM	high		medium	medium	medium	high	low	low
SP2	medium	medium		medium	medium	high	low	low
Micros- copy	medium	medium	medium		medium	medium	low	low
SP mass spetro- metry	low	medium	medium	medium		medium	low	low
Bulk measure- ments	low	high	high	medium	medium		high	medium
Remote sensing	low	low	low	low	low	high		high
RM/ GCM	low	low	low	low	low	medium	high	