Investigation of precipitation processes with RAMS and observations

Brenda Dolan, Steve Rutledge, Sue van den Heever, Steve Saleeby, Kristen Tucker, Brody Fuchs

11 June 2019

DOE ASR Meeting, Rockville MD

With thanks to: Leah Grant, Peter Marinescu, Ben Toms, Adele Igel, Sean Freeman, Aryeh Drager, Elizabeth Thompson, and Libby Barnes

Theme of work...

- There are still major uncertainties as to how model simulated drop size distributions (DSDs) compare to observed DSDs
- We can take advantage of extensive DOE databases on ground based drop size distributions by comparing to model-simulated DSDs
- Validation of DSDs relates to model microphysical fields that shape the DSDs and are strongly coupled to cloud dynamics

Goals

- Dolan et al. (2018) applied principal component analysis (PCA) to global surface disdrometer dataset
 - PCA provides a simplified statistical analysis framework for studying precipitation variability
 - Identified six groups with common DSD characteristics
 - Inferred microphysical origins from radar data

Leverage the PCA framework to statistically analyze precipitation physics using large databases of observations and model simulations:

- Assess ability of models to capture physical variability of observed DSDs
 Connect cloud processes to surface DSDs by interrogating model output
 - RAMS

RAMS simulation database:

- RAMS has been used for a wide variety of studies -> large database of different types of precipitation and environments to tap into:
 - Sea breezes (Grant)
 - BSISO (Toms)
 - Supercells (Freeman)
 - Oceanic convection (Saleeby)
 - Mid latitude MCSs (Marinescu)
 - Approximately 50/50 tropical, mid-latitude
 - Still missing some types and environments??
- RAMS 2-moment bulk microphysics (Saleeby and van den Heever 2013)
 - Extend to bin microphysics (HUCM SBM in RAMS)
- Calculate DSD parameters at surface (D $_0$, N $_w$, μ , LWC, RR, N_t) and apply PCA

RAMS PCA Results

- Nearly the same 1st two EOFs with model and observations databases
- There are some differences:
 - N_w and N_t in EOF 1 are not the same
 - Differences in LWC/RR variability in EOF2

- Six groups reside in same relative (but not absolute) regions of logN_w-D₀ space
- Model is largely capturing variability in DSD seen by disdrometer dataset
 - Pursue microphysical links to groups with model simulations

 Higher concentrations of bigger drops limitation of model

RAMS DSD Comparisons

- Sims more narrowly distributed
 - Imposed constraints?
- Most frequent simulation log(N_w) values are higher (higher number concentrations)
 - Maybe disdrometer detection _ limit?
- Conspicuous peak at D_0 ~ 1 mm
- These results are independent of characteristics of the simulation

Exploring RAMS DSD:

Supercell Thunderstorm

 Large mixing ratios, heavy precip

2D ATEX Stratocumulus

 Small mixing ratios, low
 LWC, barely
 raining at surface

Frequency peak around 1 mm for deep convection and high LWC.

Frequency peak varies for rain drops in shallow clouds and low LWC.

•

The Problem with Drop Breakup

2 0.6mm 1.06mm 1 **Rain-Rain Collection Eff** 0 -1 E=1 E: 1 to 0 -2 E < 0 Decreasing -3 Collection Droplet Efficiency Breakup -4 Regime -5 1.25 1.5 1.75 0.25 0.5 0.75 Rain Do (mm) -Efficiency(original) -Efficiency(extended)

Rain Drop Self-Collection Efficiencies

Verlinde and Cotton (1993)

Parameterization of rain drop breakup

- Large drops are forced to breakup, increasing number concentration and push mean diameter back to equilibrium size (where E=0)
 - Likely occurs in steady state rain
 - In nature (e.g. disdrometer observations), larger drops are achieved more frequently than are allowed
- Drop breakup has significant feedbacks to storm dynamics, structure, initiation, evolution, cold pools, precipitation (Morrison et al. 2012)

The Problem with Drop Breakup

Figure courtesy of Adele Igel, UC-Davis

- Many microphysics schemes represent collisional rain drop breakup similar to Verlinde and Cotton (1993)(e.g. RAMS, Morrison)
 - Alternatives?
- Same issue using HUCM bin microphysics parameterization within the RAMS model

In summary....

- Rain DSDs fall into 6 Groups with microphysical origins based on PCA
- Model produces same relative modes of variability on macro scale -> contextualize observations
- Models lack breadth in DSDs seen by observations
 - Overaggressive drop breakup
 - Do we understand drop breakup enough to accurately parameterize it?

Next Steps

 Analyze mircrophysical process rates from RAMS in relation to DSD Groups

- Explore the influence of shape parameter on model's ability to simulate DSD
 - Including in bin simulations where it can evolve

Investigate collisional drop breakup parameterization

Come see our poster! #97 in Poster session A2!

The Problem with Drop Breakup

 Shifting the Efficiency curve shifts the equilibrium diameter

- Implications and feedbacks:
 - Impact on evaporation, cold pools, precipitation, storm structure and evolution [Morrison and Milbrandt 2011, Morrison et al. 2012, van Weverberg et al. 2012]

