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Motivation and Goal

Issues with the representation of cloud cover in the Southern oceans in most CMIP5 models related to
issues representing clouds in post-cold frontal regions

Problem is also present in northern hemisphere cyclones in the winter time

Clouds in these dynamical regimes are mostly low-level clouds, driven by shallow convection in
conditions of subsidence

Naud et al. (2018) reported that post-cold frontal regions exhibit distinct cloud attributes related to the
intensity of large-scale drivers

but so far little is known on the properties of precipitation during these periods

Here we exploit ENA observations to explore the relationship between precipitation attributes and large-
scale drivers during Post-Cold Frontal conditions.




Methods

Collect ARM observations and reanalysis output centered on the ENA observatory between
10-2015 and 09-2018

Focus on periods with marine boundary clouds (cloud tops lower than 3km) and
identified periods with subsidence associated or not with a cold front.

Subsidencey,,, = subsidence with Northerly wind
Subsidenceg,,, = subsidence with Southerly wind
Subsidencepr = subsidence after the passage of a cold front
using MCMS database, MERRA-2 and Met. Station

Subsidence: standard definition, wso, > 0 hPa hr!
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Methods

Establish correlation between hourly-averaged precipitation attributes and large-scale or cloud drivers:

Larger-scale drivers Cloud drivers
* Surface relative humidity (RHg,,¢) [Met. station] * Cloud base height [KAZR2+Ceilometer]
e Surface wind speed [Met. station] * Cloud top height [KAZR2]
* Subsidence rate (ws) [MERRA-2] * Cloud thickness [KAZR2+Ceilometer]
o ATgur: Tyin-Tair [MERRA-2/Met. station]

* Estimated Inversion Strength (EIS):
9700-83urf-Fm850(2700-LCL) [Sonde/Met. Station]

Seasonal cycle Correlation between
and regime differences precip. attribute
To overcome scatter emerging from the different time per season and driver
resolutions and measurement uncertainties, i i1 2,50
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. . . - : : =
’driver intensity” : : ' r 5 LE
[ Subsidence, “HI : 48 i so0rs
[ Subsidence L io cib i Bgeso

- : T N )
- o025

|:| Subsidence , .. - =i @
[~W 60 70 80 90
6/20/19 Marine Boundary Layer Precipitation Driver

Driver




Lowest Height With Rain

3000

KAZR?2 radar reflectivity (dBZ)

Height (m)

1000 Precipitation base [ -20

8 8.1 8.2 8.3 8.4 8.5 8.6
Time (UTC)

-40

8.7 8.8 8.9 9

Estimate precipitation base height using 2-s

resolution observations then take the hourly
average

6/20/19 Marine Boundary Layer Precipitation



Lowest Height With Rain

1.50
1.25

0.75
0.50

NI

JJA

S

- Subs idenceNo o
- SubmdenceSou "
- Subs |dencepC .

0.25

Rain shaft base height (km)

2

DIJF MAM SON

Subsidencep,.._coid rront have rain that does not reach as
far down especially in the fall



Lowest Height With Rain
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Subpcr also presents: 1) lower RH,, 2) higher CBH
and 3) somewhat deeper clouds

From the correlations, only the RHy;, and CBH trends
are consistent with the rain trend suggesting that RHy.
and CBH play a more important role in determining
the lowest height where rain can penetrate.
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Precipitation Shaft Vertical Extent
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Estimate distance between precipitation top and
precipitation base height using 2-s resolution
observations then take the hourly average
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YT . Correlated Large-Scale Drivers
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In-rain rain rate 0.5 km a.g.l.
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In-rain Rain Rate 0.5 km a.g.l.
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In-rain Rain Rate 0.5 km a.g.l.
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Rain to Cloud Fraction
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Rain to Cloud Fraction
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Rain to Cloud Fraction
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contrast (AT,,¢) and somewhat higher cloud top height

Both changes in AT, and CTH are consistent with the
rain trend suggesting that AT, and CTH are both
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Can One Large-Scale Driver Explain it All?

Fletcher et al. (2016) presented the Marine Cold Air Outbreak (MCAO) parameter M
M parameter = O y;,- Osoonpa [MERRA-2/Sonde]

Higher M = Higher frequency of open cells (McCoy et al., 2017)

Higher M = Higher cloud top height (Naud et al., 2018)

Higher M = Higher cloud base height (Naud et al., 2018) Egg Y
Higher M = Deeper clouds (Naud et al., 2018)
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Conclusions Come see our poster this afternoon

The success of the M parameter could lie in its relationship to both the sea-air temperature contrast and

surface relative humidity which were both found to be highly correlated to several precipitation
characteristics in subsidence regimes.

590 | b)

Tl S
Post-Cold Frontal conditions relative to general subsidence 3 U
* rain that does not reach as far down especially in the fall §7O _I
* deepest rain shafts, especially in spring 60 2

. . . . . . . -14 -12 -10 -8 -6 4 -2 14 -12 -10 -8 -6 -4 -2
* higher rain to cloud fraction, highest in winter and spring M (K) M (K)

* no distinction in intensity of rain reaching 0.5 km across subsidence regimes and seasons

) Retrievals of:

» Rain Rate with its uncertainty

Drizzle PI product available in the ARM archive * Melting layer height

. * Drizzle water content with its uncertainty
For the Eastern North Atlantic Observatory >+ Drizzle diameter (Dy) and its uncertainty

For the period 2015-10-01 and 2018-09-29 * Drizzle number concentration (N) with its uncertainty
 Shape of drizzle drop size distribution (Mu)

* Drizzle fall velocity with its uncertainty
— » Eddy dissipation rate with its uncertainty




