

Current and Proposed Miniaturized Instruments for TBS and UAS

U

DARIELLE DEXHEIMER, FAN MEI, BEAT SCHMID

Loś Alamos

ARM Aerial Instrumentation Update and Discussion, June 24, 2020

BROOKHAVEN

Pacific Northwes

Sandia National Laboratorie:

ARM TBS Capabilities

- 1) Baldor 5 HP 180 VDC motor @ 1,276 lbs
- 2) 75:1 double-reduction gearbox
- 3) Electronic 24 VDC brake @ 9,400 lbs
- 4) Secondary hydraulic hand brake
- 5) 240 VAC reversible regenerative-driven variable speed controller
- 6) 2.75 km of 3/16" (5 mm) OD 5,500 lb mbs tether

Three TBS trailers in the fleet.

U.S. DEPARTMENT OF

- The TBS employs 3 110 m³ aerostats with a maximum payload capacity of 36 kg depending on the surface altitude.
- The balloon is not launched or retrieved in wind speeds ≥ 10 m/s.
- The balloon may be flown in wind speeds aloft of \leq 16 m/s.
- The TBS ascends and descends at a maximum rate of 0.4 m/s.
- An instrument size of ≤ 24 inches (61 cm) in any dimension is ideal, although larger shapes can be accommodated.
- An instrument that is longer in the vertical axis than in the horizontal is desirable.

2

Instrumentation on ARM TBS at AMF3 & SGP

AMF3, Oliktok Point, AK 2015 – 2020 600 TBS flight hours 0 – 7,000' (2.1 km) MSL Restricted Airspace flights:

- In clouds
- At night
- During low visibility

Cloud Properties

5							
No. No.	Instrument	Property Measured	Supplier				
	Supercooled liquid water sondes	Cloud supercooled liquid water content in g/m ³	Anasphere				
1990 A.D.	Video Ice Particle Sampler*	Ice particle maximum dimension, width, area, and aspect ratio from 1 μm – 5 mm	Natural Systems Research				
	Cloud Droplet Probe*	Droplet ice spectra from 1 μ m – 50 μ m	DMT, Ismail Gultepe				
	Backscatter Cloud Probe*	Droplet ice spectra from 5 μm – 75 μm	DMT				
	Cloud Droplet Measurement System*	Cloud droplet size distribution from 10 μm – 1 mm	Mesa Photonics				
	*guest instrument						

Aerosol Properties

Instrument	Property Measured	Supplier		
Printed Optical Particle Spectrometer (POPS) 4 units by summer 2020	Aerosol size distribution from 140 nm to 3 μm	Handix Scientific		
Condensation Particle Counter (CPC) Model 3007 (2 units)	Total aerosol concentration from 0.01 μm to 1 μm	Trust Science Innovation (TSI) Inc.		
Cascade impactors (6 units)	Size-resolved chemical composition at four cut-off sizes (0.25, 0.5, 1.0, 2.5 $\mu\text{m})$	SKC		
ADI MAGIC 200 CPC (3 units)*	Total aerosol number concentration from 1 nm to 1 $\mu\text{m};$ aerosol size distribution from 1 nm to 3 nm	Aerosol Devices Inc., Chongai Kuang		

Gas Phase Properties

Instrument	Property Measured	Supplier	
Fielded Remote Organic Sampling Technology (FROST) Sampler*	Identification and concentration of Volatile Organic Compounds on LECO GC- TOFMS > 1 picogram	SNL	

Instrumentation on ARM TBS at AMF3 & SGP

Atmospheric State and Aircraft State

Instrument	Property Measured	Supplier	and the second
iMet RSB-1 and RSB-4 radiosondes (multiple)	Pressure, Temperature, RH, 3D GPS	interMet (iMet)	
iMet XQ2 UAV Sensor (multiple)	Pressure, Temperature, RH, 3D GPS	interMet (iMet)	
Sensornet Oryx DTS*	Distributed temperature sensing at 2 m spatial resolution and 0.08 °C accuracy	Sensornet	Impactor
Silixa XT DTS*	Distributed temperature sensing at 0.5 m spatial resolution and 0.08 °C accuracy	Silixa	analysis
40C cup anemometers (8 units)	1 Hz wind speed	NRG Systems	of 7/26
3-axis sonic anemometer**	Up to 10 Hz u, v, and ω wind speed	Trisonica	biomass
3D IMU, barometric pressure altitude, GNSS heading**	Up to 200 Hz x, y, z-axis acceleration and heading (wind direction)	Bosch, U-blox	burning event
**in development			

Remote Sensing

GMT

Courtesy of Swarup China and Kuo-Pin Tseng of PNNL/EMSL

UAS Instrumentation

- Integrated Instruments
 - VectorNav (Position, Attitude)
 - AIMMS-30 (Meteorology)
 - CDP (Cloud Droplet Sizes)
 - MicaSense Camera (multispectral images)
 - IR Thermometer, Heitronics (Surface Temperature)
 - Integrated a POPS into a wing pod (Aerosol Size Distribution)
 - Developed inlet
 - ACCESS (Aerosol composition, number, size, absorption).
 - Developed community inlet
- Not integrated yet
 - Radiation package (SPN1,MFR, and IR20)

Proposed Trace Gas Instrumentation for TBS & UAS

PSI Laser Hygrometer Payload	Operating wavelength: 2.7 µm DFB Tunable Diode Laser (TDL) Pathlength: 2 x 5 cm = 10 cm Precision & Accuracy: 2 ppmv at 240 K Reporting Rate: 1 Hz 0.82 kg 39 W Water vapor mixing ratio from ScanEagle UAS deployment compared with aircraft measurements
Princeton Mid- IR CH ₄ Sensor	 4.5 kg 30 W Can detect 5 ppbv at 1 Hz Needs larger vertical gradient than 5-10 ppbv Adaptable for CO and N₂O with no change of detector/optical cell UAV CH₄ gradient and absolute amounts consistent with Picarro on tower at 1 and 9 m – in-flight comparison
University of Houston SO ₂ sonde	 New single sonde based on traditional ECC O₃ sonde system using iodine/iodide redox reaction New SO₂ method able to measure large SO₂ plumes ([SO₂] >> [O₃]) in detail (up to 250 ppb) without missing the smaller SO₂ plumes 3 sigma limit of detection of .47 ppb 1 kg Compared with original dual SO₂ sonde on 17' TBS and BlackHawk UAS

Images courtesy of D. Sonnenfroh/Physical Sciences Inc., Lei Tao/Hongming Yi/Mark Zondlo/Princeton University, James Flynn/University of Houston, Rebecca Sheesly/Baylor University

Proposed Aerosol Instrumentation for TBS & UAS

AethLabs microAeth MA200 Black Carbon monitor	 715 g Concentrations of black carbon and ultraviolet particulate matter (indicative of woodsmoke, tobacco, and biomass burning) 5λ: 375,470,525,628,880 nm Previous comparison between UAV MA200 and ground based AE-31 \$10,500
DMT Single Particle Soot Photometer – eXtended Range (SP2-XR)	 13 kg 25 W Refractory black carbon (rBC) number/mass loading, size distributions (50 – 800 nm/1.8 g/cc density), and rBC mixing state Non-BC size number/mass loading and size distribution (100 – 500 nm) also reported Used on King Air 300; 2019 POPSICL campaign and in laboratory studies (2019 Paul Scherrer Institute)
ADI MAGIC 200* CPC	 2.4 kg 30 W May be modified to detect sub 3 nm aerosol May be adapted to size-resolve sub 3 nm aerosol based on the grown droplet size spectrum May be used with radio telemetry to inform dynamic operation of TBS to target NPF Deployment on 3 ARM TBS campaigns thus far with more scheduled

Proposed Instrumentation for TBS & UAS

	APRSWorld Wind Sensor	 10 Hz 3D wind speed +/- 5 degree VectorNav wind direction 1 Hz p, T, RH \$6,500 Prototype undergoing comparisons with existing 2D TBS cup anemometers, DL, and surface-based 3D sonic anemometers 						
	SPEC Sharkeye	Instrument	Measurement Type	Sensor Specs	Target Resolution	Measurement Range	Sampling Speed	Laser Wavelength
		μCPI	Camera	1024*1280 8 bit gray scale	1µm per pixel	1µm to 1mm	~30 Hz	905 nm
13.3"		µ2D-gray	Imaging	128 Photo- Diode Array	5µm per pixel	5-640µm	Continuous	830 nm
		μFCDP	Forward Scattering	Signal and Qualifier Photodiode	1µm	1-50 µm	Continuous	785 nm
NOAA NightFOX	 Instrument package for measurement of modified combustion efficiency (MCE) and aerosol loading: CO₂ (NDIR absorption at ~4 µm), < 1 ppmv precision @ 1 s CO (2 x Alphasense CO sensors) Aerosol, fine mode (POPS) Aerosol, coarse mode (AlphaSense OPC) Aerosol filter sampler <i>Remote-sensing package for fire extent (perimeter) and spatially resolved fire radiative power (FRP):</i> Visible and Thermal IR (7.5 – 13.5 µm), FLIR Duo R (44° x 57° FoV) SWIR, ~1.6 µm imager and cross-track scanner MWIR, ~4 µm cross-track scanner *Remote-sensing package not suitable for use TBS 							

ENERGY Images courtesy of Paul Lawson/SPEC, Troy Thornberry/University of CO

8