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WRF-CAM5
• Obtained through collaboration with Yang Zhang (NC state) 

and Ruby Leung (PNNL)
• WRF-Chem with CAM5 aerosol and physics:

– MAM3 aerosols (3 aerosol modes)
– Fountoukis and Nenes (FN) series cloud droplet activation 

(includes giant CCN and dust activation), Niemand et al. (2012) 
ice nucleation

– UW (Bretherton and Park) Boundary layer scheme
– CESM cloud microphysics and cumulus scheme, shallow 

cumulus scheme TURNED OFF

36 km resolution

• 36km horizontal, 72 vertical layers, 50 
layers below 3km 

• QFED Smoke emissions, no inversion, no 
plume rise

• Started every 5 days from FNL with 3 days 
of spin-up for each initialization, aerosol 
initial conditions from previous cycle
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Ascension black carbon during August
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Computing hygroscopicity parameter (κ)

• Need observed CCN and 
size distribution

• Integrate the size 
distribution from the 
largest bin down to the 
critical diameter (dc) that 
matches the measured 
CCN concentration

• κ can be derived based 
on CCN supersaturation 
(SS) and critical diameter 
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Petters and Kreidenweis, ACP 2007
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Size distribution from LASIC
• Can be obtained from 

SMPS or UHSAS
• UHSAS probably needs 

diameter correction 
due to:
– Different refractive 

index of aerosol used 
for calibration (e.g., 
Brock et al., ACP 2016)

– Potential evaporation 
of OA (U of Hawaii 
findings)

• Use SMPS scaled to 
total aerosol number 
concentration from 
CPC(>10nm) over the 
SMPS scan

% diff CPC-SMPS (Aug 2017)
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CCN from LASIC 
• Two columns

– CCNa: 0.1-1.0 
SS

– CCNb: 0.4 SS
• CCN is often 

larger than CPC
• Normalize CCN 

to match CPC 
when CCN 0.8 
SS ~ CCN 1.0 SS 
using single 
correction 
factor (~12%)

% diff CPC-CCN (Aug 2017)

CPC(10>nm) [#/cc] (Aug 2017)
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Modeled vs 
observed κ

(accum. mode)

• Range and 
variability of κ is 
similar in model 
and obs

• Modeled increases 
in κ during high 
smoke driven by 
increases in sea salt 
and sulfate fraction
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What drives changes in observed κ?
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Κ (accum. mode)
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What drives changes in observed κ?
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Next steps

• Assess model representation of the nucleation 
mode

• Evaluate the model for other variables related to 
aerosol-cloud interactions: CCN concentrations, 
vertical velocities, cloud number droplet 
concentration

• Compare to  observations from ORACLES/CLARIFY 
that took place in the free-troposphere

Thanks! Questions/comments?
saide@atmos.ucla.edu 10



Supporting slides
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SMPS vs UHSAS critical diameter and 
kappa
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Mean diameter and GSD evaluation
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