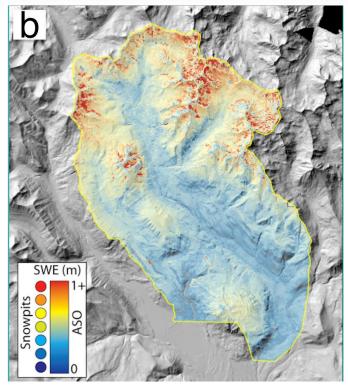
SAIL: The Surface Atmosphere Integrated Field Laboratory ARM Land-atmosphere Interaction Study Opportunities

Daniel Feldman¹, Allison Aiken², William Boos ^{1,3}, Rosemary Carroll⁴, V. Chandrasekhar⁵, William Collins^{1,3}, Scott Collis⁶, Jeff Deems⁷, Paul DeMott⁵, Jiwen Fan ⁸, Alejandro Flores⁹, David Gochis¹⁰, Jerry Harrrington¹¹, Matt Kumjian¹¹, L. Ruby Leung⁸, Travis O'Brien¹², Mark Raleigh¹³, Alan Rhoades¹, McKenzie Skiles¹⁴, Jim Smith¹⁵, Ryan Sullivan⁶, Paul Ullrich^{1,16}, Adam Varble⁸, Ken Williams¹

1 Lawrence Berkeley National Laboratory; 2 Los Alamos National Laboratory; 3 University of California-Berkeley; 4 Desert Research Institute; 5 Colorado State University; 6 Argonne National Laboratory; 7 NSIDC; 8 Pacific Northwest National Laboratory; 9 Boise State University; 10 NCAR; 11 Pennsylvania State University; 12 Indiana University; 13 Oregon State University; 14 University of Utah; 15 University of California-Irvine; 16 University of California-Davis

Thursday, June 25, 2020, 11:00 – 1:00 EDT | 1

Why study land-atmosphere interactions?


- Impact on cloud development and precipitation frequency/intensity
 - Source for atmospheric water vapor
 - Source convective buoyancy
 - Modify static stability
- Aid in prediction of extreme events (floods, droughts, heatwaves)
- Wildfire, agriculture, and water resource management

Unique opportunities with SAIL

- Mountainous, heterogeneous terrain
 - Extreme heterogeneity in mass and energy fluxes
 - Poorly modeled in ESMs; huge impact on mountain hydrology
 - Limited comprehensive datasets
 - Scale mismatch
- DOE's Watershed Function Science Focus Area (SFA) ongoing surface and subsurface hydrologic observations

Example of heterogeneity in snow water equivalent. Image from SAIL proposal

- Understand seasonally variably land-atmosphere interaction processes that control surface energy and water budgets
 - Controls on winter latent and sensible heat fluxes
 - Changes in energy balance from snow wind redistribution/sublimation
 - Impact of aerosol on surface albedo and energy balance
 - Advective fluxes from heterogeneous unfrozen and frozen surfaces
 - Impact of surface processes to regional/continental scale flow of water

SAIL instrumentation

- ARM measurements: ECOR/SEBS, GND/SKYRAD, IRT, MET
- Hydrology obs. (red)
- Met stations (sun/thermometer), with associated wind-rose
- SNOTEL stations (snowflakes)
- Airborne Snow Observatory
- Secondary ECOR/SEBS?

Existing measurement networks in the E. River Watershed. Image from SAIL proposal.

