

# Evaluating the E3SM and CESM simulations of aerosols and CCN with the ACE-ENA campaign and ARM ground-based observations

Xiaohong Liu, Hua Xie, Yang Shi, Zheng Lu, Jian Wang, ACE-ENA Science Team

#### **Objectives**

#### **Model Evaluation and Process Studies:**

- Evaluating and improving the representation of MBL aerosol and CCN in GCMs using "nudged" or "specified" meteorology.
- Examining aerosol and CCN budget and processes driving the vertical structure and mesoscale variation of aerosol and CCN using validated/constrained GCM simulations.

### **Model and Data**

- DOE Energy Exascale Earth System Model version 1 (E3SM), using "nudged" meteorology from 2014-2017
- NCAR Community Earth System Model version 2 (CESM), using "nudged" meteorology from 2014-2017 and also "climatology"
- Surface observations at ENA:
   CCN (0.1% and 0.2%) from 2014
   to present, and aerosol number and composition (e.g., sulfate and organics) from 2014-2016
- Aircraft observations during ACE-ENA field campaign:
   CCN and composition in 2017
   June/July and 2018
   January/February



### Seasonal variation of surface CCN and aerosol number



- Models capture observed magnitudes and seasonal variations of CCNs (0.1% & 0.2%). E3SM has higher
   CCN concentrations than CESM
- Models have large biases in simulating number concentrations of smaller particles with E3SM strongly overestimating and CESM underestimating observations

#### Seasonal variation of surface aerosol composition



E3SM strongly overestimates and CESM slightly overestimates observed sulfate and organics

# Comparison of CCN with aircraft observations during ACE-ENA



 Model captures the vertical profiles and seasonal variations of CCN (0.1%), consistent with surface site observations

# Comparison of aerosol composition with aircraft observations during ACE-ENA



 Models overestimates observed vertical distributions of sulfate and organics with E3SM much higher than CESM, consistent with surface site observations

### Summary

- Models capture observed magnitude, seasonality, and vertical profile of CCN (0.1% and 0.2%) based on comparison with surface site and aircraft observations.
- However, models have large biases in simulating number concentrations of smaller particles, and aerosol composition (sulfate and organics). E3SM significantly overestimates observations both at surface and high elevations.

#### **Future work**

- Understand aerosol processes responsible for large model biases (e.g., SO<sub>2</sub>, organics, biomass burning emissions at surface for CESM2 while E3SM emits at high elevations)
- Conduct analysis of CCN budget over ENA site