Large contribution of organics to condensational growth and formation of cloud condensation nuclei (CCN) in remote marine boundary layer

Guangjie Zheng^{1,2}, Chongai Kuang², Janek Uin², Thomas B. Watson², and Jian Wang^{1,2,*}

¹ Washington University in St. Louis

² Brookhaven National Laboratory

June 25, 2020 ARM/ASR PI Meeting

Motivation

Marine low clouds: extensive coverage, strong climate effects

Properties of marine low clouds are sensitive to the change in CCN populations

Simulated Aerosol 1st indirect forcing & its uncertainties. Adapted from Carslaw et al. (2013)

Condensation growth: an important CCN source in remote MBL

Modified from Zheng et al., (2018);

See also: Pierce et al., (2006); Pierce et al., (2007); Yu et al., (2009); Sanchez et al., (2018), etc.

Major condensing species: sulfate vs. organics

■ SO₄²: included in current global models

Pandis et al., 1994

Major condensing species: sulfate vs. organics

- SO₄²: included in current global models
- Organics: usually not tracked

(See also: Mungall et al., 2017; Wurl et al., 2011; Brüggemann et al., 2018)

Constraining major condensing species from κ_c

- \Box Large κ difference between sulfates and organics
 - ◆ MSA: ~0.36; other Org: < ~0.3;</p>
 - ◆ (NH₄)₂SO₄: ~0.61; NH₄HSO₄:~0.8; H₂SO₄ ~0.9

Monthly variation of major condensing species

- A total of 62 events was observed
 - ◆ More events observed in summer due to the relatively stable air masses
- \square Classification of growth events according to κ_c value:
 - ♦ Organic dominated (κ_c < 0.45)
 - \bullet NH₄HSO₄ H₂SO₄ dominated ($\kappa_c > 0.65$)
 - $(NH_4)_2SO_4$ dominated or mixtures $(0.45 < \kappa_c < 0.65)$

Sulfate or a mixture of bisulfate, sulfuric acid, & organics?

- □ Insights from the difference between κ_c measured by SCCN $(\kappa_{c,CCN})$ and HTDMA $(\kappa_{c,GF})$
 - \bullet (NH₄)₂SO₄ less difference ($\kappa_{GF} \sim 0.53$, $\kappa_{CCN} \sim 0.61$) (Petters et al., 2007)
 - ullet Organics: usually larger gap between $\kappa_{\rm GF}$ and $\kappa_{\rm CCN}$ (e.g., Petters et al., 2009)

Summary

- Organics contribute significantly to the condensation growth and the formation of CCN over remote oceans like ENA.
 - ◆ Condensing species were dominated by NH₄HSO₄ / H₂SO₄ during only 11 of 62 (18%) growth events observed.
 - ◆ During most (58%) of the growth events, the condensing species is a mixture of sulfate/SOA
 - This contribution is usually not included in current global models
- See more details in: Zheng et al. 2020, submitted to ACP

