

Seasonal contrasts in clouds and aerosols during ACE-ENA

Rob Wood, Matt Wyant, Sam Pennypacker University of Washington

Key points

- Summer has 2-3 times more aerosols and CCN than winter near the surface
- Summertime N_d is only about 20-40% higher than winter N_d .
- Difference in aerosol activation efficiency related to:
 - Weaker PBL decoupling in winter
 - Stronger turbulence in winter

G-1 Flight Data

- Two periods: June-July 2017, Jan-Feb 2018
- About 20 flights each period
- ~10am 2pm local time
- Mostly near the ENA site

Decoupling Estimate

- Coupled and decoupled boundary layers are common in both seasons.
- Winter 2018 had more deep well-coupled cases.

Seasonal sounding contrasts

Aerosol contrasts

 CCN and accumulation mode aerosol concentrations 2-3 times higher near the surface during summer; seasonal contrasts weaker in upper PBL

Mean cloud properties

- Mean LWC profiles (and LWP) very similar in summer and winter
- Cloud droplet concentrations are 20-40% higher in summer

Differences in activation efficiency

Higher N_d for a given
CCN concentration in winter

Turbulence and aerosol activation

 Higher activation "efficiency" in winter partly explained by stronger updrafts

Key points

- Summer period has 2-3 times more aerosols and CCN than winter near the surface
- Summertime N_d is only about 20-40% higher than winter N_d .
- Difference in aerosol activation efficiency related to:
 - Stronger turbulence in winter
 - Weaker PBL decoupling in winter
- Upcoming paper (Wyant et al., 2020) also investigates impacts on precipitation susceptibility

Extra slides

