Profiles of MBL Cloud and Drizzle Microphysical Properties retrieved from Ground-based Observations and Validated by Aircraft data during ACE-ENA IOP

Xiquan Dong

University of Arizona

Wu et al. 2020, JGR

Decompose cloud and drizzle reflectivity from KAZR Measurements

- (a) Cloud droplets have maximum reflectivity of ~-15 dBZ calculated from FCDP and 2DS data
- (b) Find the height of -15 dBZ. The reflectivity above this height is solely contributed by cloud droplets

(c)
$$Z_{c,base} = Z_{above} - Z_{below}$$
, LWC_c increase linearly $\sqrt{Z_c}$ increase linearly $Z_d = Z_{obs} - Z_c$

Comparison of Retrievals and Aircraft data

Vertical profiles from retrievals and aircraft data

Cloud

- r_c and LWC_c increase from cloud base to top
- Drizzle drops form near cloud top with smallest size and highest concentration.
- As they fall, drizzle drops grow bigger towards the cloud base
- N_d decreases toward the cloud base
- From both time series and vertical profiles:

Good agreements between surface retrievals and aircraft in-situ data

All cases during ACE-ENA

Surface retrievals can reproduce similar PDFs as aircraft measured ones

Negative retrieval biases except N_c

Retrieval uncertainties

 $\frac{|aircraft - surface|}{aircraft}$

The retrieval uncertainties are estimated using aircraft data during ACE-ENA

Median retrieval
errors are
~15% for r_c
~35% for N_c,

~30% for LWC_c, $r_{m,d}$ ~50% for N_d, LWC_d

Summary

- Algorithm development: retrieve cloud and drizzle microphysics profiles
- Retrieval validation: Collocated aircraft measurements
- Median retrieval uncertainties were ~15% for r_c , ~35% for N_c , ~30% for LWC_c, and r_d , and ~50% for N_d and LWC_d
- r_c increase from the cloud base to $z_i = \sim 0.75$ then decrease towards the cloud top, r_d monotonically increase from the cloud top to the cloud base then decrease below the cloud base
- $r_d \approx 3 \sim 6 r_c$
- $N_d \approx \frac{1}{1000} \sim \frac{1}{100} N_c$ $LWC_d \approx \frac{1}{10} LWC_c$
 - A Statistical results about ENA cloud and drizzle microphysical properties will be presented in Wu et al. (2020, J Clim., accepted).

THANK YOU!

Remote Sensing Retrieval

Retrieval:

$$x = G^{-1}y$$
e.g.,
$$T = \sqrt[4]{\frac{F}{\sigma}}$$

$$y = \begin{pmatrix} Z \\ \sigma_d \\ \beta \\ LWP \end{pmatrix}$$

$$Z = \int_0^{D_{max}} D^6 N dD$$

$$Z = \int_0^{D_{max}} D^6 N dD$$

Retrieval:

x: microphysics

y: remote sensing Obs.

G: math/phys. formulas

$$x = \begin{pmatrix} r_c \\ N_c \\ LWC_c \\ r_d \\ N_d \\ LWC_d \end{pmatrix}$$
 Cloud
$$D_c = 20 \ \mu m$$
 Drizzle
$$D_d = 150 \ \mu m$$

$$Z_{drizzle} >> Z_{cloud}$$

Cloud

$$D_c = 20 \, \mu m$$

$$D_d = 150 \, \mu m$$

$$Z_{\text{drizzle}} >> Z_{\text{cloudy}}$$

Assumptions:

- Lognormal Dist. for cloud droplets and normalized Gamma Dist. for drizzle drops
- Drizzle drop number concentration increases linearly from below to above cloud base
- 3. Cloud droplet number concentration does not vary with height