

Observations of marine stratocumulus microphysics, turbulence, and aerosols during ACE-ENA

Jae Min Yeom^{1,2}, Nithin Allwayin¹, Silvia Henning³, Pavlos Kollias⁴, Edward Luke⁵, Claudio Mazzoleni¹, Raymond A. Shaw¹, Holger Siebert³, André Ehrlich⁶, Birgit Wehner³, Manfred Wendisch⁶, Seong Soo Yum²

¹Dept. of Physics, Michigan Technological University, USA ²Dept. of Atmospheric Sciences, Yonsei University, Korea ³Leibniz Institute for Tropospheric Research, Leipzig, Germany ⁴School of Marine and Atmospheric Sciences, Stony Brook University, USA ⁵Brookhaven National Laboratory, USA ⁶Leipzig University, Leipzig, Germany

Result & Discussion

Conclusion

Remote vs in-situ turbulence energy dissipation rate

 Favorable comparison of ACTOS in-situ cloud turbulence observations with RADAR observations

Result & Discussion

Conclusion

Result & Discussion

Conclusion

(cm² s⁻³)

Alt (m) 12:90

0 01 0.2

L (g m⁻³

a (g m⁻³)

U (m s⁻¹)

 $\theta_1(\mathbf{K})$

- Wind shear is stronger in P2 than in **P1.**
- The values of in-cloud vertical velocity (W) of P1 show higher fluctuations than those of P2.

Conclusion

- Slope value (γ_s) in Log L and Log τ_p space is close to -1 if mixing is inhomogeneous.
- Shown below: γ_s for multiple G1 flights in stratocumulus clouds, organized by height within the cloud: inhomogeneous near cloud top.

- Slope value (γ_s) in Log L and Log τ_p space is close to -1 if mixing is inhomogeneous.
- Shown below: Mixing diagrams and averaged values of γ_s for P1 and P2

Result & Discussion

Conclusion

Discussion

• The mean diameter (D_m) versus the standard deviation of diameter (σ_D) and relative dispersion (σ_D/D_m) for each penetration.

Conclusion

• Why are the relationships between D_m and σ_D/D_m different between RF0709-P1 and P2?

Result & Discussion

Conclusion

- Favorable comparison of remote and in-situ estimation of turbulence energy dissipation rate.
- Sharp transitions of cloud microphysical properties were found in one stratocumulus cloud system (RF0709-P1 and P2).
- Compared to P1, the wind shear and turbulent dissipation rate are stronger and larger in P2.
- The slope value (γ_s) analysis suggest inhomogeneous mixing near cloud top, but there is a slight difference between each penetration perhaps due to larger turbulent dissipation rate.

Future work and collaboration

 The horizontal structure of the cloud top will be investigated by using observations from the thermal-infrared camera. (Dr. André Ehrlich)