Observations of marine stratocumulus microphysics, turbulence, and aerosols during ACE-ENA

Jae Min Yeom\(^1,2\), Nithin Allwayin\(^1\), Silvia Henning\(^3\), Pavlos Kollias\(^4\), Edward Luke\(^5\), Claudio Mazzoleni\(^1\), Raymond A. Shaw\(^1\), Holger Siebert\(^3\), André Ehrlich\(^6\), Birgit Wehner\(^3\), Manfred Wendisch\(^6\), Seong Soo Yum\(^2\)

\(^1\)Dept. of Physics, Michigan Technological University, USA
\(^2\)Dept. of Atmospheric Sciences, Yonsei University, Korea
\(^3\)Leibniz Institute for Tropospheric Research, Leipzig, Germany
\(^4\)School of Marine and Atmospheric Sciences, Stony Brook University, USA
\(^5\)Brookhaven National Laboratory, USA
\(^6\)Leipzig University, Leipzig, Germany
Remote vs in-situ turbulence energy dissipation rate

- Favorable comparison of ACTOS in-situ cloud turbulence observations with RADAR observations

RF0716: 10 km ACTOS flight path

The mean energy dissipation rate (ε) matches well

Narrow distribution for RADAR due to larger averaging time
- **RF0709-P1 and P2** Same cloud system, but two microphysical regimes
Wind shear is stronger in P2 than in P1.

The values of in-cloud vertical velocity (W) of P1 show higher fluctuations than those of P2.
- Slope value (γ_s) in Log L and Log τ_p space is close to -1 if mixing is inhomogeneous.
- Shown below: γ_s for multiple G1 flights in stratocumulus clouds, organized by height within the cloud: inhomogeneous near cloud top.
- Slope value (γ_s) in Log L and Log τ_p space is close to -1 if mixing is inhomogeneous.
- Shown below: Mixing diagrams and averaged values of γ_s for P1 and P2

<table>
<thead>
<tr>
<th></th>
<th>RF0709-P1</th>
<th>RF0709-P2</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_s</td>
<td>-0.98</td>
<td>-0.93</td>
</tr>
</tbody>
</table>

Mixing diagrams and averaged values of γ_s for P1 and P2.
Discussion

- The mean diameter (D_m) versus the standard deviation of diameter (σ_D) and relative dispersion (σ_D/D_m) for each penetration.

- Why are the relationships between D_m and σ_D/D_m different between RF0709-P1 and P2?
- Favorable comparison of remote and in-situ estimation of turbulence energy dissipation rate.

- Sharp transitions of cloud microphysical properties were found in one stratocumulus cloud system (RF0709-P1 and P2).

- Compared to P1, the wind shear and turbulent dissipation rate are stronger and larger in P2.

- The slope value (γ_s) analysis suggest inhomogeneous mixing near cloud top, but there is a slight difference between each penetration perhaps due to larger turbulent dissipation rate.

Future work and collaboration

- The horizontal structure of the cloud top will be investigated by using observations from the thermal-infrared camera. (Dr. André Ehrlich)