Breakout Session 3: Deployment of the Third ARM Mobile Facility to the Southeastern US

AMF3 SEUS: Chongai Kuang, Shawn Serbin, Scott Giangrande, James Smith, Allison Steiner, Gregory Elsaesser, Thijs Heus, John Peters, Mariko Oue, Pierre Gentine

ARM: Jim Mather, Nicki Hickmon, Joe Hardesty
● Goals:
 ○ Present AMF3 SEUS background, site science, team, and activities.
 ○ Present and receive feedback on SEUS science opportunities and challenges targeting aerosol, convective cloud, and land-atmosphere interaction topics.

● Agenda:
 ○ AMF3 SEUS Overview
 ■ Jim Mather: Relocation of the 3rd ARM Mobile Facility to the Southeast US
 ■ Joe Hardesty: AMF3 Relocation to Southeast US (SEUS)
 ■ Chongai Kuang: AMF3 SEUS Site Science Team

 ○ SEUS Science Drivers: opportunities, challenges, and lessons-learned
 ■ Gregory Starr: Land-Atmospheric Interactions in the Southeast US
 ■ Allison Steiner: AMF3: Atmospheric Aerosols in the Southeastern US
 ■ Kevin Knupp: Boundary layer heterogeneity and deep convection
 ■ Discussion
AMF3 SEUS Site Science Team: Introduction, Timeline, and Activities

Chongai Kuang, Shawn Serbin, Scott Giangrande, James Smith, Allison Steiner, Gregory Elsaesser, Thijs Heus, John Peters, Mariko Oue, Pierre Gentine
2021: AMF3 will begin relocation to the SEUS

Motivators for going to the SEUS:
- Abundant surface-forced shallow to deep convection
- Large amount of vegetative-driven biogenic emissions
- Strong local coupling of land-surface with atmosphere

Joint ARM-ASR funded project (Q1 2020)

5 year deployment length expected, with operations beginning March 2023

Specifics on site location, configuration, instrumentation to be determined in part through a DOE supported Site Science Team (SST)
This is the first time that ARM, ASR, and SST are working together like this to advance Science. This is not a conventional AMF deployment - opportunity for collaborative, interdisciplinary, transformational Science.

We are Gravitational Attractors/Advocates/Ambassadors, not Gatekeepers.

Emerging measurement opportunities: advanced/spatially distributed sensing.

Our proposal was selected, in part, because of Land-Atmosphere Interaction strengths (including terrestrial focus area).

Siting of the AMF3 in the SEUS will be informed by: SST, community feedback, and operational/logistical considerations.
Project Membership: Core Team

- Chongai Kuang: BNL, PI (aerosol)
- Scott Giangrande: BNL, co-PI (convection)
- Shawn Serbin: BNL, co-PI (land-atmosphere interactions)
- James Smith: University of California, Irvine
- Allison Steiner: University of Michigan
- Gregory Elsaesser: GISS, Columbia University/NASA
- John Peters: Naval Postgraduate School
- Mariko Oue: Stony Brook University, NY
- Thijs Heus: Cleveland State University
- Pierre Gentine: Columbia University
Project Membership: External

- **Advisory Committee:**
 - BNL leadership (Allison McComiskey, Mike Jensen, Andy Vogelmann, Art Sedlacek)
 - Pavlos Kollias: SBU
 - Dave Turner: NOAA
 - Hugh Morrison: NCAR
 - Markus Petters: NCSU

- **External Partners:**
 - ARM/SNL (Jim Mather, Nicki Hickmon, Jennifer Comstock, Adam Theisen, Joe Hardesty, Lori Parrott, Rebecca Jeffers, Dari Dexheimer, Fred Helsel)
 - SEUS experts
 - SEUS networks
Anticipated Project Timeline

Near Term:
- Jul 2020: Windstorm Extreme Event Research Network Workshop
- Late summer: ESS-targeted AMF3 SEUS workshop (planned)
- Fall 2020: Potential focused ARM/ASR breakouts
- Dec 2020: AGU - town hall
- Jan 2021: AMS - town hall proposal planned

Long Term:
- Mar 2021: Site “shortlist” identified
- Sep 2021: Site identified
- Mar 2023: Site operational
- Mar 2024: Advanced and/or spatially distributed instrumentation installed
SST Activities: Planning Documents

- Direct guidance from the ASR/ARM (i.e., ARM Workshop outcomes):
 - Spatially distributed measurements
 - Atmospheric state/flux measurements over agricultural and woodlands/forests
 - Characterize variations in aerosols (urban/rural)

- Initial Team Activities: "Tiered Traceability Matrices"
 - Science Driver Matrices: Driver ⇒ Prioritized Questions ⇒ Required Measurements
 - Instrument Matrices: Measurements ⇒ Instruments (prioritized) ⇒ Operational Requirements
 - Site Matrices: Potential Sites ranked against Science Drivers
 - GIS Map generation to inform siting
 - Cross-cutting topics: structural co-location/co-prioritization
 - User feedback on measurement needs and observational scales (spatial and temporal) is critically important!

- Emphasis on Cross-Cutting Science Drivers:
 - role of plant BVOC emissions on SOA processes/properties
 - aerosol/cloud radiative effect impacts on plant physiological response
 - convective transport impacts on aerosol spatial variability
 - role of surface energy balance on convection
Activities: GIS (Geographic Information System) Maps

Convective Clouds
- Example: placement of the AMF3 facility within 100 km of a surveillance precipitation radar (or partner facility).
- Example: if focused on "surface-forced" shallow to deep convection - easy to buffer, ignore domains too close to coastlines (< 150 km).
Activities: GIS Maps - Aerosol

- **Example**: Column NO2 map from satellite remote sensing (TROPOMI) - indicator of anthropogenic pollution

- **Further map considerations**:
 - Aerosol optical depth
 - Aerosol precursors (SO2, BVOCs)
 - Biomass burning

- **Siting**:
 - Avoid strong industrial/urban emission sources
 - Avoid complex topography
Activities: GIS Maps - Land-Atmosphere Interactions

National Land Cover Database - 2016

NLCD Land Cover Classification Legend

- 11 Open Water
- 12 Perennial Ice/ Snow
- 21 Developed, Open Space
- 22 Developed, Low Intensity
- 23 Developed, Medium Intensity
- 24 Developed, High Intensity
- 31 Barren Land (Rock/Sand/Clay)
- 41 Deciduous Forest
- 42 Evergreen Forest
- 43 Mixed Forest
- 51 Dwarf Scrub*
- 52 Shrub/Scrub
- 71 Grassland/Herbaceous
- 72 Sedge/Herbaceous*
- 73 Lichens*
- 74 Moss*
- 81 Pasture/Hay
- 82 Cultivated Crops
- 90 Woody Wetlands
- 95 Emergent Herbaceous Wetlands

* Alaska only
Activities: Outreach

- ARM has always sought community feedback -- continuous improvement, flexibility to identify high priority science needs -- often gathered through workshops, ASR Working Groups, Field Campaign PIs, and other mechanisms *(this breakout session)*.

- We strive for a very active community outreach. This includes outreach to:
 - Environmental System Science
 - ARM constituent groups (UEC, AMSG, CPMSG)
 - science working groups (ACPC)
 - ASR working groups (AP, CP, WBLP)
 - Relevant multi-agency SEUS Field Campaigns
 - SEUS experts, partners, and measurement networks

- Slack channel
- email list: seus@arm.gov, seusteam@arm.gov
- webpage: https://www.arm.gov/capabilities/observatories/amf/locations/seus
Thank You!

https://uah.roundshot.com/swirl/