Aerosol-cloud-precipitation interactions in mixed-phase clouds over the Southern Ocean: Results from recent field campaigns

Greg McFarquhar

Cooperative Institute for Mesoscale Meteorological Studies School of Meteorology

University of Oklahoma, Norman, OK

ARM/ASR Science Team Meeting 25 June 2020

SOCRATES/MARCUS/MICRE/CAPRICORN Themes

Theme 1: Documenting the synoptically-varying vertical structure of SO boundary layers and clouds

Theme 2: Variability of sources and sinks of SO CCN and INPs and role of local biogenic sources over spring, summer and fall

Theme 3: Supercooled liquid clouds over SO

Theme 4: Retrieving the properties of mixed-phase clouds

For data to have broad impact on climate modeling, modeling community was integral part of project design so as to use data for systematic confrontation of leading climate models

SOCRATES (Jan 15-Feb 26 2018): NSF G-V deployment

CAPRICORN (2016-2018): Australian R/V Investigator

MICRE (2017-2018): DOE, AUS instruments on Macquarie Island

MARCUS (2017-2018): AMF-2 on Aurora Australis

Synergy between projects

Campaign Advantages

MICRE: Long seasonal sample

CAPRICORN: More detailed oceanographic, aerosols & surface flux measurements

MARCUS: Seasonal cycles poleward of 60°S

SOCRATES: Process studies and remote sensing evaluation

Preliminary Results

- **1. Surface Aerosol Observations**
- 2. BL Aerosol and CCN Observations
- 3. INP Data
- 4. Ship and Ground-based Remote Sensing of Clouds
- 5. In-situ Measurements of Clouds

- Aerosols sampled 150 m above ocean by CVI ($0.1 < D < 5 \mu m$) stored frozen for analysis by TEM and X-ray spectroscopy
- Dominated by sulfur-based particles primarily biogenicallyproduced sulfuric acid
- Second-most frequent particle type in this size range (mean 28%) was salt-based sea-spray

BL Aerosols: What controls number and composition?

- Salt-based sea-spray dominated by unprocessed, sodium chloride-based seaspray particles
- Many of the large sea-spray particles had detectable carbonaceous coatings, which may be important in ice nucleation

BL CCN: What controls number?

- CCN spectra in BL grouped in 4 clusters using k means clustering
- Clusters associated with bimodality in CN and CCN concentrations
- Division between low and high at approximately 750 cm⁻³ for CN and dependent on supersaturation for CCN

Sanchez et al. 2020

explain variability in CCN

- Low CN/high CCN southerlies influenced by Antarctic coastal biological productivity,
- high CN/low CCN westerlies characteristic of RPF low accumulation mode conctn.
- High CN/high CCN Similar as high CN/low CCN but with condensational growth of RPF to **CCN** sizes
- Low CN/low CCN aerosols scavenged by precipitation and lack RPF

What are INP concentrations over SO?

- INP concentrations at -20°C
 collected by CSU IS
 measuring immersion
 freezing T spectra on bulk
 aerosol samples collected
 onto polycarbonate filters
 (pore size of 0.2 μm)
- Large variability, but generally low, INPC concentrations
- Weak overall dependence on latitude, with highest concentrations on land (especially towards Australia)

Comparison of satellite & ship retrievals:

Comparison of satellite & *ship retrievals:* **Ship-reported occurrence at 500 m**

Alexander et al. 2020

Comparison of satellite & ship retrievals: Ship reported occurrence at 500 m is double that reported by satellite.

Alexander et al. 2020

• Ding/McFarquhar VAP segregate data by environmental, geographic & meteorological conditions observed during MARCUS to identify controls of SLW

Variable	Source
Sea surface temperature (SST)	Infrared Thermometer
Cloud base temperature (CBT)	Cloud base height (CBH) from Ceilometer merged with T profiles from 6hourly sounding
Precipitating /non- precipitating clouds (PC/NPC)	Maximum column radar reflectivity dBZ _{max} >-15 dBZ is PC, -30 <dbz<sub>max <-15dBZ is NPC (Huang et al., 2016)</dbz<sub>
Coupled /decoupled	$\triangle c_b = CBH - LCL, \triangle c_b > 300m$ is decoupled & $\triangle c_b < 300m$ is coupled (Comstock et al., 2005)
North/ South of the ocean polar front (NPF/SPF)	Daily SST from AVHRR (Dong et al., 2006)
Air mass origin westerly/ easterly (W/E)	48hrs HYSPLIT back trajectory simulation
Location relative to cyclone	Sea level pressure (SLP)

4. Relative location in cyclone system

Conceptual models:

Ding et al. 2020

 How properties of single-layer, nonprecipitating clouds with z_b < 3 km & > 500 km from nearest cyclone center varied whether north or south of 60°S.

PWV [g/m²]

0

S

N

- How properties of single-layer, nonprecipitating clouds with z_b < 3 km & > 500 km from nearest cyclone center varied whether north or south of 60°S.
- Average cloud base T ~ -10°C S of 60°S

N

S

400

[³⁰⁰ 200 100

0

Ding et al. 2020

- How properties of single-layer, nonprecipitating clouds with z_b < 3 km & > 500 km from nearest cyclone center varied whether north or south of 60°S.
- Average cloud base T ~ -10 °C S of 60 °S
 → SLW extensive south of polar front

N

WV [g/m²]

 How properties of single-layer, nonprecipitating clouds with z_b < 3 km & > 500 km from nearest cyclone center varied whether north or south of 60°S.

 Average cloud base T ~ -10°C S of 60°S
 → SLW extensive south of polar front even though less precipitable water

N

400

[³⁰⁰ 200 100

0

WV [g/m²]

 How properties of single-layer, nonprecipitating clouds with z_b < 3 km & > 500 km from nearest cyclone center varied whether north or south of 60°S.

 Average cloud base T ~ -10°C S of 60°S
 → SLW extensive south of polar front even though less precipitable water

 CCN and retrieved N_c peaked in December and appear less south of 60°S

N

400

[³⁰⁰₂₀₀] 200 100

Clouds: In-Situ Data and Process Studies

Relative phase occurrence frequency

Large frequency of SLW from -20° to 0°C Ice-phase observed from -5° to 0°C

D'Alessandro et al. 2020

Summary

- Unique sets of data on SO clouds now available
 - 15 GV research flights
 - 4 voyages of Aurora Australis (spring, summer and fall)
 - 2 years of data at Macquarie Island
 - 2 cruises of R/V Investigator
- Initial findings
 - Pristine environment with numerous small and few large aerosols above cloud
 - \rightarrow new particle formation & long-range transport from continents
 - Very few ice nucleating particles
 - High concentrations of aerosols over ocean where winds intense
 - Ubiquitous SLW in thin, multi-layer clouds with small-scale generating cells near cloud top
 - Variability of cloud properties and CCN associated with aerosols & meteorological conditions

Future

- SOCRATES-II????
 - Alternate season: Explore observations in transition season where greater variability in blooms over course of project
 - Lagrangian rather than Eulerian experiment (try to trace how clouds evolve in subsequent flights)
 - Observations closer to Antarctic (suitcase flights to Antarctic?)
 - Two aircraft for coincident remote sensing/in-situ data
 - More comprehensive data on aerosol chemical properties
 - Holographic observations would have strengthened cloud data