

Aerosol-Related Data Products and VAPS

JOHN SHILLING

PNNL

ASR Science Team Meeting 2020

New Data Products

- ACSM b-1 datastream
 - Currently available for SGP and ENA data October 2019 present.
 - Runs daily and provides ACSM calibrated species concentrations, an ACSM volume, and QA/QC checks.
 - Assumes CE = 1.
- Ozone b-1 datastream
 - Provides calibrated, background corrected O₃ concentration.
 - Available for SGP, OLI, ENA.
- CCN average datastream
 - Computes the average CCN concentration at multiple SS setpoints.
- CCN spectra datastream
 - Fits to describe CCN number as a function of supersaturation.

New Data Products - Size Distributions

- ► We have generated (by FY20 end) harmonized b-level datastreams for:
 - Nano-SMPS
 - SMPS
 - UHSAS
 - APS
- ► These harmonized datastreams standardize variable names and units, including:
 - Size distributions in dN/dlogDp units.
 - This will facilitate size distribution inter-comparison.
 - Size bin diameter midpoints and upper and lower bounds
 - Integrated number concentration, volume, and surface area.
 - Will facilitate inter-comparison.
 - QA/QC checks on the data.

SP2 Processing: BC size distributions (Led by Scot Collis Group at ANL)

- Modernizing legacy IGOR code for SP2 processing in Python
- Calculating BC mass and diameter to get size distributions.
- Current status: Implementing filtering and comparing vs. IGOR
- Need to calibrate size calculation

Code at: https://github.com/rcjackson/PySP2

Operational VAPS: Aerosol Optical Properties (AOP)

- Combines PSAP extinction and Neph scattering data to calculate: aerosol absorption coefficient, SSA, angstrom exponents, asymmetry parameter, corrected scattering, etc.
 - Calculations are provided for different PSAP correction algorithms.
- ► AOP VAP is operational and data are available for almost all sites and field campaigns.
- Recently updated the algorithm to detect and correct for PSAP filter changes.
 - Should improve data availability.

Operational VAPS: Aerosol Optical Depth (AOD)

- ► Uses MFRSR data to retrieve aerosol optical depth at 7 wavelengths from 415 1625nm.
 - Recently added a 1.6 um channel to MFRSR and we are updating VAPS to include this channel.
 - Runs autonomously at some sites, but needs some hand-processing at challenging sites with frequent cloud cover.
 - Will update Langley every 6 months for ENA, NSA, MCQ (challenging sites).
 - ENA and MCQ will be processed this FY.

New This Year: Quality Control Aerosol Optical Depth (QCAOD) VAP

- Individual AOD products vary in continuity, data quality, and temporal resolution due to differences in instrument design and data processing.
- ► The QCAOD VAP integrates four AOD products and generates nearly-continuous combined AOD.
 - Reports AOD at two wavelengths, 500 and 870 nm.
 - High temporal resolution (1-min) for 21-yr period (1997-2018) at SGP.
 - Recently available.

New This Year: ACSM Composition Dependent Collection

Efficiency VAP

➤ We have applied the composition dependent collection efficiency calculation from Middlebrook et al. 2012 to the autonomous ACSM b1 data.

- ➤ This will generate an ACSM_CDCE datastream, which will run in near real-time.
- ▶ In general, the CDCE algorithm significantly improved the ACSM/SMPS comparison at SGP, but it isn't perfect.
 - Need to look into other sites.
- ► Should be available for SGP by end of FY20.

Date and Time

- $N_{\text{CCN, measured}}(SS, t) =$ $SS_{crit} = \left[\frac{4}{\kappa D_p^3} \left(\frac{4\sigma M_W}{3RT \rho_W} \right)^3 \right]^{1/2}$

- **New This/Next year: CCN Kappa VAP**
- ▶ We are calculating a parameterized, bulk hygroscopicity (kappa) value by combining CCN and SMPS data.
- Kappa value is calculated for each value of SS.
- We expect data will be released late FY20/early FY21 for SGP.
 - Will work on ENA data next.
 - UHSAS measures size instead of an SMPS.

New This/Next year: CCN Vertical Profile VAP

- ▶ We are rebooting a CCN vertical profile VAP developed by Ghan, McFarlane, Collins.
 - VAP generates the vertical profile of CCN at SS values measured by the CCNC.
 - Valid up to cloud base
- Will run autonomously at sites with a CCNC and a lidar.
- ▶ Data will be available starting in FY21.
 - We are currently developing this VAP for the SGP site.
 - Will validate VAP with aircraft data.
 - Will work on ENA site next.

Reference: Ghan, SJ and DR Collins. 2004

Plans for FY 2021

New VAPS starting next year:

- ► AOD Best Estimate evaluates multiple AOD datastreams and provides an evaluation of the best estimate at 5 wavelengths.
- Merged Size Distribution will merge size distributions from multiple instruments (initially nano-SMPS, SMPS, APS)

VAPS expected to come online FY20/FY21:

- ► ACMS CDCE expected to be extended to most sites and field campaigns
- CCN Kappa for SGP and ENA.
- CCN Vertical profile for SGP and ENA.
- AOD for NSA.

New datastreams:

- ▶ b1 processing of CO and SO₂.
- b1 data for ACSM AMF deployments.

Science Product Development Led by a Team of Scientists

Shaocheng Xie Lead Translator Modeling POC

John Shilling Aerosol POC TRACER POC

Damao Zhang
High-latitude POC
MOSAiC POC

Scott Collis
Convective POC
CACTI POC

Scott Giangrande
Warm Clouds POC
COMBLE POC

Krista Gaustad Software Development

Ken KehoeData Quality

