Multi-frequency radar signatures of ice and snow from the AWARE campaign

F. Tridon1, S. Kneifel1, A. Battaglia2,3, A. Fridlind4, I. Silber5

1Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany
2Earth Observation Sciences, Department of Physics and Astronomy, University of Leicester, Leicester, UK
3National Center for Earth Observation, University of Leicester, Leicester, UK
4NASA Goddard Institute for Space Studies, New-York, NY, USA
5Department of Meteorology and Atmospheric Science, Pennsylvania State University, PA, USA
Motivation

- How different aggregation and riming are for mid-latitude vs. high-latitude clouds?
- 3-frequency radar measurements provide constraints to particle sizes and bulk density
- During AWARE, triple-frequency radar observations have been collected for the first time in Antarctica
- Unique opportunity to evaluate the importance of aggregation and riming in such a cold and pristine environment
Why triple-frequency radar?

- For large particles, scattering depend on radar frequency
- DWR can be used for sizing ice particles (Matrosov et al., 1993)
- Triple-frequency space for 2 pairs of DWRs
- Aggregates separate from rimed particles in the triple frequency space

\[DWR_{Ka,W} = Z_{e,Ka} - Z_{e,W} \]

→ New grasp on the scattering of aggregates thanks to ARM radars during the BAECC field campaign (Finland, 2014): first triple-frequency dataset
Comparing statistics of ice processes

Overall similarity is quite surprising!
But also significant differences

Dendritic growth
Riming

Unexpected that riming happens at colder temperatures during AWARE

→ Further look at a case study
AWR 2016-01-04: quality-controlled radar reflectivity

- Correction of gas attenuation
- Correction of time and height offsets
- Relative calibration from Rayleigh targets at cloud top

Z_{w} significantly lower than Z_{Ka}
AWR 2016-01-04: quality-controlled DWRs

Quick increase from 2 to 14 dB in 500 m

DWR_{X,Ka} remains relatively small

Strong DWR_{Ka,W} between 1.8 and 2.3 km

Liquid layer from 2 km
→ rimed and unrimed ice are both possible (but with large μ)

→ 3-f signature which looks like riming but cannot be explained by exp PSDs

Mason et al. (2019)
LWP estimate from cloud top $\text{DWR}_{\text{Ka-W}}$ (BAECC example)

- New technique developed and tested on BAECC dataset
- Cloud top $\text{DWR}_{\text{Ka-W}}$ provides
 - Estimate of LWP when MWR radiometer is not available
 - Estimate of snow attenuation when combined with MWR

Tridon et al., How to estimate total differential attenuation due to hydrometeors with ground-based multi-frequency radars? AMTD, under review.
AWR 2016-01-04: LWP estimate from cloud top DWR_{Ka-W}

Attenuation of W is negligible at cloud top

$\Delta PIA < 0.5 \text{dB}$
\rightarrow LWP < 100 g/m2

Ongoing work: 1D LES bin simulation with DHARMA

Israel Silber and Ann Fridlind

The bin model is able to reproduce the large DWR_{Ka-W}
Conclusions and next steps

- Installing 3-f radars in Antarctica was worth the effort!

- AWARE reveals for the first time:
 - Intense aggregation/riming seems to be common in clouds around McMurdo
 - 3-frequency radar measurements can improve retrievals of D_m and IWC
 - Statistics provide constraint for model microphysics

- 04/01/2016: case study with striking 3-f signature
 - Can be explained by both heavily rimed or unrimed ice but with narrow PSDs ($\mu > 4$)
 - Less than 0.5 dB total attenuation at W-band \rightarrow LWP < 100 g/m2

- Current work: 1D LES bin simulations with DHARMA
 - It seems that the model can reproduce the narrow PSDs
 - Can we produce heavily rimed aggregates with such a little amount of LWP?
 - Effect of complex local orography?

Thanks for your attention
Questions?