Climatology of ShCu bulk entrainment at the SGP observatory

Daniel Kirshbaum, McGill University
Katia Lamer, Brookhaven National Lab

ARM/ASR 2020 PI meeting
Method 1: Jensen and Del Genio (2006)

• 2021 individual ShCu clouds
 ➢ Surface-based, cloud tops < 5 km, depths > 250 m
 ➢ Computes fractional entrainment rate (ε) required for parcel LNB to match cloud-top height

• Notable sensitivities: CAPE (+), RH (+), shear (+), cloud-base mass flux (-)
 ➢ No sensitivity to cloud width (not shown)
Method 2: Drueke et al (2019; TKE)

- 128 1-h ShCu periods
 - Surface-based, cloud tops < 5 km, depths > 250 m
 - Use scaling of equilibrium TKE budget to estimate ε
 \[\varepsilon \sim \frac{\text{CAPE}^{1/3}}{m_{b}^{2/3}z_{\text{cld}}} \]

- Strong dependence on RH (+), m_{b} (-) and cloud-layer depth (-)
Preliminary conclusions and future work

• Two simple bulk entrainment retrievals give different perspectives on ShCu entrainment
 ➢ Individual clouds vs cloud ensembles

• Robust positive sensitivity to environmental CAPE and RH, negative sensitivity to z_{clld} and m_b
 ➢ Also, positive sensitivity to vertical wind shear in JDG parcel method

• Future work:
 ➢ Other environmental sensitivities?
 ➢ Dimensional analysis: nondimensional controlling parameters
 ➢ ERICA retrieval (Wagner et al 2013)
 ➢ Repeat climatology at ENA site