Partition of cloud and drizzle LWP using synergistic active and passive sensors

Maria P. Cadeddu and Virendra Ghate Argonne National Laboratory

Passive Module: Drizzle macro-physics

The inclusion of scattering reduces the cloud liquid water path of 8-15% depending on the amount of precipitation and drizzle drop size and allows to gain insight into the partition of cloud and drizzle water path in the cloud.

Ongoing work

Datasets 2015-2019:

Merged 5 yrs of Radar, Ceilometer, Doppler lidar, aerosol, and radiometer data Selected **56 days** of closed cell stratocumulous clouds

Current work:

- Evaluating uncertainty in Active module due to assumptions in the retrieval
- Characterizing drizzle sedimentation rate
- Analyze data from these cleaned datasets with a focus on **aerosols, and drizzle intraction**

Details of our work so far can be found in:

Ghate, V., Cadeddu, M.P.: "Drizzle and Turbulence Below Closed Cellular Marine Stratocumulus Clouds", J. Geophys. Res.: Atmos., 2019, 124, 5724–5737, DOI: 10.1029/2018JD030141, 2019.
Cadeddu, M.P., Ghate, V., Mech, M.: "Ground-based observations of cloud and drizzle liquid water path in stratocumulus clouds", Atmospheric Measurement Techniques . 2020, Vol. 13 Issue 3, p1485-1499.
Ghate, V. et al., "Turbulence in Marine Boundary Layer Observed at the ARM Eastern North Atlantic site", in preparation, 2020