How do updrafts vary with height in the subcloud layer?

Neil P. Lareau and Courtney Keene
University of Nevada, Reno

Variation of intensity and width with height

"Flatten the curve" -> as updrafts ascend the occurrence of wide strong updrafts increases

Rooted updrafts are stronger and wider, varying less linearly with height.

How sensitive are updraft properties to environmental factors?

Convective Velocity (w*) Horizontal Wind (U) w*/U

- Updraft intensity is sensitive to both the cross wind and the buoyancy forcing
- Updraft width is primarily sensitive to the buoyancy forcing.

What Predicts Updraft Fraction?

What is the relationship between updraft size and strength?

VECTOR: Vertical Exchange and ConvecTive Initiation over

Exchange over flat Boundary Layer Exchange over Mountain Boundary Layer

Image courtesy of TEAMX

Points of contact:

Neil Lareau- nlareau@unr.edu
Daniel Kirshbaum- daniel.kirshbaum@mcgill.ca
Stephan De Wekker- sfd3d@virginia.edu

ORography

Why? Improve our understanding of how

- 1) Turbulent exchange processes in complex terrain vent water vapor and aerosols from the boundary layer to the free troposphere, and how this venting feeds back on surface and near-surface radiation and thermodynamics.
- Mountain boundary layer processes, including thermals and thermally driven flows, control convective preconditioning and initiation.
- 3) Complex terrain boundary layer and convective processes are represented in numerical models.

VECTOR is aligned with the Transport and Exchange processes in the Atmosphere over Mountains – programme and experiment (TEAMx).

When/Where: Proposed AMF1 deployment to the European Alps in summer 2023 or 2024.

Funding: Associated NSF proposal in development (Stephan De Wekker).