

Micro-Spectroscopic Examination of Free Troposphere and Marine Boundary Layer Ice Nucleating Particles During ACE-ENA

D. A. Knopf, P. Wang, J. C. Charnawskas, J. Tomlin, K. Jankowski,
B. Wong, Y. Lu, M. W. Fraund, D. Bonanno, D. P. Veghte, N. N. Lata,
S. China, A. Laskin, R. C. Moffet, J. Y. Aller, J. Wang

Stony Brook University, Stony Brook, NY, USA Pacific Northwest National Laboratory, Richland, USA Purdue University, Lafayette, USA Sonoma Technology, Petaluma, USA Washington University in St. Louis, St. Louis, USA

06/25/2020

Particles Collected at Ground Site and on DOE G-1 Research Aircraft Using Impactor

T, RH controlled ice nucleation

Backward Trajectory Analysis - HYSPLIT

Ground Site Sampling

At 30 m height, all trajectories remain close to surface.

Using 100 m height, night sample may include air masses from higher altitude.

Ground site: Collaborators on backward trajectory simulations welcomed!

Airborne Sampling

Ice Nucleating Particles From the ACE-ENA Ground Site

Ground Site INP Samples

Airborne INP Samples

Night 1: 7/14-7/19 Night 2: 7/2-7/9

Stage 6: cut-off: 560 nm

CCSEM/EDX Cluster Analysis

4 unique particle-type cluster recognized.

mostly fresh)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

dust

Cluster # 2, 5485 particles Sea Salt 10

CCSEM/EDX - Analysis of All Day and All Night Samples

Nighttime samples display greater abundance of aged sea spray particles and mineral dust components.

SEM/EDX Analysis of Individual INPs

SEM/EDX Analysis of Individual INPs

INPs belong to major identified particle type class. Highlighted night sample is unique in its particle type class. Purely organic aerosols might act as INPs. However, also aged sea salt and potentially mineral dust, all associated with organic material. 8

Ice Nucleation Kinetics

Free troposphere aerosol exerts about one order of magnitude greater ice nucleation rate coefficients!

Aerosol Population – STXM/NEXAFS

Ground Site Aerosol Samples

Airborne Aerosol Samples

IOP2 BL

IOP2 FT

Organic Volume Fraction – STXM/NEXAFS

Ground Site Aerosol Samples

Airborne Aerosol Samples

Summary

- During IOP1, particles were collected at ground site during night- and day-time. During IOP1+2, particles were collected onboard G-1 aircraft.
- Particles and INPs have been physicochemically characterized and identified.
- INPs reflect typical aerosol population composition.
- Differences in ice forming propensity are partly explained by composition, however, open questions remain.

Outlook

Preparing two manuscripts on INP sources at ACE-ENA compiled from ground site and airborne collected samples.

Funding & Acknowledgements

U.S. Department of Energy Atmospheric System Research: DE-SC0016370 Climate and Environmental Science Division

DOE National User Facilities

12