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Aims of GASSP
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Robust model uncertainty reduction
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GASSP aerosol database :
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ICARTT NEAQS-ITCT2004 ACCACLA
MAGE g2 AGCAGIA
MANMM ACE1
MIRAGE ACEZ
NAURUSS ACEASIA
NEAQS2002 ACEASIA | ACE-Asia
NEACS2004 AEGEAN GAME
OP3 AEROSOLS99 INDOEX
PASE A-FORCE
FEM Tropics A AMMA
PEM Tropics B ADE-98
FEM West A ADE-2001
PEM West B APPRAISE
Polarstern Cruise 1 ANT-XXVII4 ARCPAC2008
Polarstern Cruise 2 ANT- XXV IIN ARCTAS
Polarstern Cruise 3 ANT-XXVII/S BORTAS
RHaMELe CALNEX
RITS 93 CAST
RITS 24 COPE
— RONOCO O
SEAC4RS DISCOVER-AQ
Southern Oxidants Study OY NAMO
TexAQS2000 EM25
TexAQS/GoMACGS EUCAARI-LONGREX
TEXAQS - GoMACCS 2008 GOAMazon
TexAQS HIFPO
TexAQS2006 ICEALOT
TexAQS2006 INDOEX
TRACE-F INTEX-A / INTEX-NA
TROMPEX INTEX-B
—VOCALS INTEX-B
—_—  VOCALS-REx ITCT2002
— VOCALS-REX
WACS2012
WACS2014

1995-2014

Harmonised ~55,000 hours of aircraft and ship data

350 ground stations from 15 networks/databases.

Focus on Size distributions, N, PM2.5, CCN, BC, composition

Reddington et al., The Global Aerosol
Synthesis and Science Project:
Observations and modelling to reduce
uncertainty, BAMS, 2017



GASSP level 2 coverage &
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GASSP CPC data i
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Dunne et al., Global atmospheric particle
formation from CERN CLOUD measurements,
Science (2016)



Reduction in forcing uncertainty §
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Observations ) Constrained memsm) Constrained
model parameters Forcing

~9000 grid-point measurements:
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gucl phate Johnson et al. (ACP, 2020)
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Reduction in forcing uncertainty umveas.wom!ﬂ

Global RF,,; standard deviation reduced by 34%
Local reductions up to 50%

Oconstrained

Ounconstrained



What have we learned?
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* Diversity of measurement types (variables) is very useful for
model constraint

— But it comes with challenges of data harmonisation

* |n situ datasets are not created with large-scale automated model
constraint in mind

 Measurement representativeness errors are a major limiting factor
In constraint

 We need measurements from characteristic aerosol environments
— There is a lot of ‘over-sampling’
— We can (to some extent) define these environments
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Dataset issues
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Dataset heterogeneity
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_ _ Example Number names
In situ measurement datasets are set up for case studies,

not large-scale model evaluation and constraint / N4
CNsubten
d_9pOum_particles
18,400 N3 4
Number 153,615 27 236 N4_20
N14 NONVOL
BC 916 4 18 NBTO40
PM 716 21 9 N13_volatile
Composition 15,948 8 23 pal2_pl4conc
Size distributi 379 11 5 pd_Op24um_particles
Ize distribution N150
ScNcSTP
CNcold_3760
Variable NUM Cnvolatile
Variable attributes diam_upper, diam_lower N20_150

... EtC
\ ... Etc.
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Other dataset problems b
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Web interfaces Manual download of sites / variables / years separately

~20 different formats: Txt, excel, csv and netCDF etc.
One file per variable per day -> many variables and multiple years per file

Environmental data T, p, location etc often in separate file with different time base

Essential data Missing STP, cut-off sizes, wet/dry conditions, radius/diameter, log,, or log,

Contextual information E.g. a plume-hunting flights not flagged
Time axis Inconsistent. We use Unix Epoch (1 Jan 1970)
Very heterogeneous (nm, e-9 m, nanometer, nanometre etc.)

Attribution Inconsistent info on how to use/cite data
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GASSP database 4
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Subject to PI approval, harmonized, model-ready data will be available through
CEDA in self-describing, machine-readable NetCDF format
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Spatial representativeness error
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Spatlal representativeness errors T i

Black carbon over Oklahoma

Johnson et al. ACP 2020: “The
biggest challenge (and the factor
that most limits the constraint,
other than model structural error)
is quantification of the
representativeness error associated
with comparing point
measurements with a global
model.”

Reddington et al., BAMS, 2017 15



Measurement strategy to constrain models
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Find sweet spot of representativeness error and instrument error

A

High cost © Low cost
.| High accuracy Low accuracy
O |Large representativeness error ‘ Low representativeness error
| -
LL] { O

‘ ‘ Moderate cost
Moderate accuracy
Moderate representativeness error

<] 1 10 100

Number of sites per grid box
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POPSNet: A pilot network to understand B
representativeness error UNIVERSITY OF LEED

« Portable Optical Particle Spectrometer
(POPS) designed at NOAA (Gao et al. 2016)

e 0.13-2.5um

o See Lizzy Asher’s AGU poster
https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/550294

An ARM Small
Campaign

Project team:
Allison McComiskey,
David Fahey,

Troy Thornberry,
Ru-Shan Gao,

Drew Gentner
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What / where to measure
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% of uncertainty

Causes of model uncertainty

i
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Rather than clean/polluted or land/marine, we can define regions
according to model uncertainties that can be reduced
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JAN

FEE MAR APR MAY JUN JUL AUG SEF OCT MOV DEC

B CRYDEF _AER_ACC )
[ ANTH S04
M RI0_S04
B ANTH S02
B FRIM_S04_D1AM
[ FF_Dlahe
50203 _CLEAN
B AIT_wIDTH
B Fr_nuc

BL_NUC

% of uncertainty

CCN uncertainty at Tomsk

I

4| B anTH S04

1| I 2NTH_502

—| W FRIN_S04_11aM

B PRIM_S0O4_FRAC

P BEE_DIaM

I FF_Di 1Ak

B EE_EMS

W 50203_CLEAN

B AT_WILTH

B Fr_uC
BL_NUC

JaM FEB MAR AFRE MaY JUMN

Lee et al., The magnitude and causes of uncertainty in global model
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Model uncertainty clusters versiryor 1K

Model uncertainty clusters

Lee et al., On the relationship between aerosol model
uncertainty and radiative forcing uncertainty, PNAS, 2016 20



Summary
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1. GASSP database of aerosol microphysical and chemical properties
harmonized and made machine-readable ~200,000 data files

2. Used successfully to constrain global aerosol model uncertainty

3. “Mass use” of in situ datasets presents huge challenges because of
dataset heterogeneity and lack of inter-operability

4. Model-measurement representativeness errors are possibly more
Important than instrument error — a measurement strategy to reduce
this error would be valuable

5. Model sensitivity analysis can provide a guide to “what to measure
where”

21



GASSP data versus time &
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Reddington et al., BAMS, 2017



GASSP data versus latitude K
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Reddington et al., BAMS, 2017



Networks used in GASSP &
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Instruments used in GASSP &
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Learning about model structural errors
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