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Reduce uncertainty in 
global model simulations 
of aerosol properties and 
radiative forcing

Use the powerful 
combination of extensive 
model data and a 
synthesis of 
measurements

Aims of GASSP

Reddington et al.
The Global Aerosol 
Synthesis and Science 
Project: Observations and 
modelling to reduce 
uncertainty, BAMS, in 
review



3

Robust model uncertainty reduction

Measurements

Reject observationally 
implausible model 
variants

Plausible set 
of  predictions 
(e.g., forcing)

Observationally 
plausible 

model variants

Comprehensively 
sample dozens of 

uncertain factors in 
the model

Forcing ForcingJohnson et al. ACP (2018)
Yoshioka et al. JAMES (2019)

~Few million 
climate model 
‘variants’ generated 
from an emulator 
trained on a 
perturbed 
parameter 
ensemble 
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GASSP aerosol database

• 1995-2014
• Harmonised ~55,000 hours of aircraft and ship data
• 350 ground stations from 15 networks/databases.
• Focus on Size distributions, N, PM2.5, CCN, BC, composition

Reddington et al., The Global Aerosol 
Synthesis and Science Project: 
Observations and modelling to reduce 
uncertainty, BAMS, 2017
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GASSP level 2 coverage
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GASSP CPC data

Dunne et al., Global atmospheric particle 
formation from CERN CLOUD measurements, 

Science (2016)
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Reduction in forcing uncertainty

Observations Constrained 
model parameters

Johnson et al. (ACP, 2020)

~9000 grid-point measurements:

• AOD
• PM2.5
• N>50nm
• N>3nm
• Sulphate
• OC

Constrained 
Forcing
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Reduction in forcing uncertainty

Global RFari standard deviation reduced by 34%
Local reductions up to 50%

𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝜎𝜎𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
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• Diversity of measurement types (variables) is very useful for 
model constraint
– But it comes with challenges of data harmonisation

• In situ datasets are not created with large-scale automated model 
constraint in mind

• Measurement representativeness errors are a major limiting factor 
in constraint 

• We need measurements from characteristic aerosol environments
– There is a lot of ‘over-sampling’
– We can (to some extent) define these environments 

What have we learned?
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Dataset issues
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Variable #Files #Instruments #Variable names

CCN 18,400 4 111

Number 153,615 27 236

BC 916 4 18

PM 716 21 9

Composition 15,948 8 23

Size distribution 879 11 2

Dataset heterogeneity
Example Number names

N4
CNsubten
N10 
d_9p0um_particles 
N3_4
N4_20
N14_NONVOL 
N8TO40 
N13_volatile 
pa12_p14conc 
pd_0p24um_particles
N150
ScNcSTP
CNcold_3760
Cnvolatile
N20_150
… Etc
… Etc.

Variable NUM
Variable attributes diam_upper, diam_lower

In situ measurement datasets are set up for case studies, 
not large-scale model evaluation and constraint
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Other dataset problems

Web interfaces Manual download of sites / variables / years separately
File formats ~20 different formats: Txt, excel, csv and netCDF etc.

One file per variable per day -> many variables and multiple years per file

Environmental data T, p, location etc often in separate file with different time base

Essential data Missing STP, cut-off sizes, wet/dry conditions, radius/diameter, log10 or loge

Contextual information E.g. a plume-hunting flights not flagged

Time axis Inconsistent. We use Unix Epoch (1 Jan 1970)

Units Very heterogeneous (nm, e-9 m, nanometer, nanometre  etc.)

Attribution Inconsistent info on how to use/cite data
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Subject to PI approval, harmonized, model-ready data will be available through 
CEDA in self-describing, machine-readable NetCDF format

GASSP database
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Spatial representativeness error



15

Spatial representativeness errors

-60     -40     -20      0        20      40      60
% error

Black carbon over Oklahoma
% error of 100km global 

model vs. point measurement 

Johnson et al. ACP 2020: “The 
biggest challenge (and the factor 
that most limits the constraint, 
other than model structural error) 
is quantification of the 
representativeness error associated 
with comparing point 
measurements with a global 
model.” 

Reddington et al., BAMS, 2017

Far from urban 
areas is also not 
representative!
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Measurement strategy to constrain models

Er
ro

r

Number of sites per grid box

<1        1             10                 100 

Low cost
Low accuracy
Low representativeness error

High cost
High accuracy
Large representativeness error

Moderate cost
Moderate accuracy
Moderate representativeness error

Find sweet spot of representativeness error and instrument error
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• Portable Optical Particle Spectrometer 
(POPS) designed at NOAA (Gao et al. 2016)

• 0.13 – 2.5 μm
• See Lizzy Asher’s AGU poster 

https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/550294

POPSNet: A pilot network to understand 
representativeness error

Mean since Nov 2019An ARM Small 
Campaign

Project team: 
Allison McComiskey, 
David Fahey, 
Troy Thornberry, 
Ru-Shan Gao, 
Drew Gentner
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What / where to measure
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Rather than clean/polluted or land/marine, we can define regions 
according to model uncertainties that can be reduced

Causes of model uncertainty

CCN uncertainty at Hyytiala CCN uncertainty at Tomsk

Lee et al., The magnitude and causes of uncertainty in global model 
simulations of cloud condensation nuclei, ACP, 2013

%
of

 u
nc

er
ta

in
ty

%
of

 u
nc

er
ta

in
ty

CC
N

 (c
m

-3
)

CC
N

 (c
m

-3
)



20

Model uncertainty clusters

Constrained

Unconstrained

Fractional 
reduction 
in CCN 
variance

Model uncertainty clusters

Observational constraint

Lee et al., On the relationship between aerosol model 
uncertainty and radiative forcing uncertainty, PNAS, 2016
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1. GASSP database of aerosol microphysical and chemical properties 
harmonized and made machine-readable ~200,000 data files

2. Used successfully to constrain global aerosol model uncertainty

3. “Mass use” of in situ datasets presents huge challenges because of 
dataset heterogeneity and lack of inter-operability

4. Model-measurement representativeness errors are possibly more 
important than instrument error – a measurement strategy to reduce 
this error would be valuable

5. Model sensitivity analysis can provide a guide to “what to measure 
where”

Summary
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GASSP data versus time

Reddington et al., BAMS, 2017
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GASSP data versus latitude

Reddington et al., BAMS, 2017
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Networks used in GASSP
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Instruments used in GASSP
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Learning about model structural errors

-0.15 W m-2 -0.27 W m-2
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