

Developing an ARM-EMSL Joint Capability via Tethered Balloon Deployments

FAN MEI, DARIELLE DEXHEIMER, ZIHUA ZHU, SWARUP CHINA, YADONG ZHOU, CASEY LONGBOTTOM, BEAT SCHMID

L

Pacific Northwest National Laboratory, Richland, WA, United States.

Sandia National Laboratories, Albuquerque, NM, United States.

BROOKHAVEN

2020 ARM/ASR User Facility PI Meeting, June 24, 11 am - 1 pm

Los Alamos

EPARTMENT OF

Pacific Northwes

Sandia National

U.S. DEPARTMENT OF

- Highly Heterogeneous in aerosol number concentrations, size distribution, chemical composition, mixing state, optical properties, and cloud-nucleating properties, as well as boundary layer properties such as temperature, moisture and winds.
- **Community needs:** routine in situ sampling to provide the spatial context for the ground measurements. Description Illustration

Reid et al., 2018; Takahama et al., 2007a; Takahama et al., 2010

ARM TBS Deployments

AMF3, Oliktok Point, AK 2015 – 2020 600 TBS flight hours 0 – 7,000' (2.1 km) MSL Restricted Airspace flights:

- In clouds
- At night
- During low visibility

SGP CF, Billings, OK SGP EF9, Ashton, KS SGP EF36, Marshall, OK 2019 – 2020 175 TBS flight hours 0 – 6,000' (1.5 km) MSL

Flight Patterns

ARM TBS Instrumentation

Atmospheric States and TBS States

Instrument	Property Measured	Status
iMet RSB-1 and RSB-4 radiosondes (multiple)	Pressure, Temperature, RH, 3D GPS	ARM Facility
iMet XQ2 UAV Sensor (multiple)	Pressure, Temperature, RH, 3D GPS	ARM Facility
Sensornet Oryx DTS Siliax XT DTS	Distributed temperature sensing at 2 m and 0.5 m spatial resolution and 0.08 °C accuracy	SNL owned
40C cup anemometers (8 units)	1 Hz wind speed	ARM Facility

SGP.

Aerosol Properties

Instrument	Property Measured	Status
Printed Optical Particle Spectrometer (POPS) 4 units by summer 2020	Aerosol size distribution from 140 nm to 3 μ m	ARM Facility
Condensation Particle Counter (CPC) Model 3007 (2 units)	Total aerosol concentration from 0.01 μ m to 1 μ m	ARM Facility
Cascade impactors (6 units)	Size-resolved chemical composition at four cut-off sizes (0.25, 0.5, 1.0, 2.5 $\mu m)$	ARM Facility
ADI MAGIC 200 CPC (3 units)*	Total aerosol number concentration from 1 nm to 1 μm ; aerosol size distribution from 1 nm to 3 nm	BNL owned

Elemental information obtained from Computer Controlled SEM (CCSEM) & Energy Dispersive X-Ray Spectroscopy (EDS)

ARM

Ensembled Dataset from a Biomass Burning Event

Other Dust Carbonaceous Sulfates Na-rich Sulfates Na-rich particles July 26th, 2019 Biomass burning event

Particle morphology

POPS 14 26-Jul-2019 16:47:38--26-Jul-2019 19:41:52 10⁵ (POPS) 10⁴ (10⁴ (10⁴

POPS SD 26-Jul-2019 17:46:47--26-Jul-2019 18:22:55

- A unique surface analysis tool.
- Spatial resolution of several nanometers
- Molecular composition

U.S. DEPARTMENT OF

SIMS Spectra and Imaging – Identify the Mixing State and Core-shell Detection

ARM

Principle Component Analysis (PCA) PC1 vs PC2 Scores Plots, Positive Ion Spectra

The PC1 scores indicate surface organic coverage increases comparing with the inorganic mineral, while aerosol size decreases.

The PC2 scores majorly reflect different mineral components in the aerosol samples.

- During a pilot study at the Southern Great Plains (SGP) atmospheric observatory in July 2019, TBS was flown with aerosol and meteorology sensors, which include condensation particle counters, printed optical particle spectrometers, cascade particle impactors, iMet radiosondes, fiber optic distributed temperature sensing, and anemometers.
- Multimodal micro-spectroscopy of single particle and molecular-level information of atmospheric aerosol collected at different altitudes will be characterized by novel capabilities, such as secondary ion mass spectrometry, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy, at Environmental Molecular Sciences Laboratory (EMSL).
- These analyses will provide their physical, chemical, optical, and microphysical properties at an unprecedented level. Results from this study will be crucial to be incorporated into climate models to improve their predicational capability.

Thank you very much!

Any questions?

U.S. DEPARTMENT OF

L	Peak assignment	Accurate Mass	Unitiviass	NO. #	+ loading
	Na+	22.989	23	1	
	C4H7+	55.055	55	2	
	C3H5+	41.039	41	3	
	C3H5O+/C4H9+	57.035/57.071	57	4	
	C5H9+	69.074	69	5	
	C5H7+	67.0561	67	6	
	Mg+	23.985	24	7	
	K+/C3H3+	38.964/39.023	39	8	
	C6H11+	81.076	81	9	
	C6H12+	84.087	84	10	
		83.092/83.056	83	11	
		95.09/95.053	95	12	
		97.073	97	13	
		71.053/71.092	71	14	
		42.999/43.055	43	15	
		78.989/79.058	79	16	
		91.056	91	17	
		85.11	85	18	
		53.039	53	19	
		93.074	93	20	
t	Peak assignment	Accurate Mass	UnitMass	No. #	- loading
	Si+	27.977	28	1	
	SiOH+	44.978	45	2	
	PDMs	73.053/72.957	73	3	
	CNH4+	30.042	30	4	
	CH3+	15.023	15	5	
	CHCa+	44.05	44	6	
	C3H8N+	58.067	58	7	
	C10H19O+	155.151	155	8	
	COH3+	31.018	31	9	
	SiF+/SiH3O+	46.974/46.995	47	10	
	 C2H5+	29.039	29	11	
	H+	1.007	1	12	
		59.049	59	13	
		75.029	75	14	
		167.113	167	15	
		201.133	201	16	
		45.978	46	17	
		183,179	183	18	
	CH2+	14,015	14	19	
/	0112 1	87 942/88 024	88	20	

U.S. DEPARTMENT OF

PC2 Loadings Plot (Positive Ion Spectra)

U.S. DEPARTMENT OF

GY

EN

+ loading	No. #	UnitMass	Accurate Mass	Peak assignment
	1	23	22.989	Na+
	2	39	38.964/39.023	K+/C3H3+
	3	77	77.01/77.043	Si2H7N+/C3H9S+
	4	51	51.022	C4H3+
	5	91	91.056	SiCH9N3+
	6	63	63.023	C5H3+
	7	115	115.054	С9Н7+
	8	128	128.06	C10H8+
	9	65	65.039	C5H5+
	10	53	53.039	C4H5+
	11	165	165.06	
	12	78	78.05	
	13	27	27.023	C2H3+
	14	152	152.06	
	15	50	50.014	
	16	52	52.03	
	17	1	1.007	H+
	18	141	141.064	
	19	178	178.06	
	20	103	103.053/102.97	
- loading	No. #	UnitMass	Accurate Mass	Peak assignment
	1	57	57.035/57.071	C3H5O+/C4H9+
	2	43	42.999/43.055	SiCH3+/C3H7+
	3	71	71.053/71.092	C4H7O+
	4	73	73.053/72.957	PDMs
	5	69	69.074	C5H9+
	6	84	84.087	C6H12+
	7	83	83.092/83.056	C6H11+/C4H7N2+
	8	55	55.055	C4H7+
	9	85	85.11	C6H13+
	10	56	56.05/56.061	C3H6N+/C4H8+
	11	97	97.073	
	12	70	70.072	
	13	59	59.049	C3H7O+
	14	147	147.08	
	15	201	201.133	
	16	155	155.151	C10H19O+
	17	42	42.034/41.997	
	18	81	81.076	C6H11+
	19	95	95.09/95.053	1
	20	98	98.097	