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= Secondary organic aerosol (SOA)
= Black carbon (BC) Microphysical processes including

nucleation, condensation, coagulation,

= Particulate organic aerosol (POA) resuspension

= Marine organic aerosol (MOA)
(Burrows et al., 2014; 2018)

Removal processes including wet and dr
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deposition.




x%/ Science question 1: How much do the structural
Pacific limitations of E3SM aerosol impact the ability to

Northwest

AAAAAAAAAAAAAAAAAA adequately simulate CCN number?

Model simplifications include:

o Size distribution

* Chemistry

« Mixing state (potentially important for CCN)

Observations needed: 0 . U 100

» Aerosol composition (largely ACSM, also SP2, PSAP) Zheng et al., 2020

» Aerosol size distribution (SMPS, UHSAS, APS)

« Kappa-hygroscopicity and/or CCN number concentration (CCN counter, HTDMA, and
potentially other instruments)

Some previous marine/coastal ARM campaigns (e.g., MAGIC, MARCUS, AWARE, ...)
measured either detailed aerosol chemistry, or CCN / cloud properties, but not both.

EPCAPE includes these measurements alongside measurements of cloud properties.
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\’f/ How much do simulation errors in CCN matter to

Pacific

Northwest  gimulated clouds?

Possible strategies:

(&) Change in RSW due o so., and OM

1. Apply double-call radiation methods to %0
isolate the cloud droplet number —40
concentration (N4) response, after applying 3 -so
corrections based on: g0 | |
= Model-observation discrepancies in CCN s lllﬁfﬁﬁlllllll'liﬁnnf‘*"”///z S=i 00 -///////_{/.{(-/5- i
= EPCAPE-observed CCN - N, SRS 0N D U F WA M)y

o , ] ] ] McCoy, Burrows et al., Sci. Adv., 2015
2. |Initialize Lagrangian LES simulations with

aerosol conditions developed
1. from observations, and/or
2. from a 3D simulation (regional or global model)

Compare with a single-column model
(SCM; e.g., from E3SM) initialized similarly

More discussion of opportunities for LES-
SCM comparisons:

Breakout session on Thursday morning,
“High latitude marine post-frontal clouds”




Science question 2: Can we separate the roles of
aerosol and meteorology in determining cloud
properties in marine and continental airmasses ?
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Three approaches to measure “marine influence”:
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1. Lagrangian footprint analysis (example at right)

2. Measures of “anthropogenically-influenced air” (AETH, o
PSAP, O3, SO2, CO2 L

3. Measures of meteorological influence (e.g., humidity
and boundary layer structure)
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* Do these three measures always correlate?
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Do cloud properties differ between observation times Example: FLEXPART source influence
that have been grouped by the above metrics (either footprints for two different days during the
singly or in combination)? CalWater-2015 / ACAPEX campaign.

Figures by Gavin Cornwell



\%,/ Science question 3: do process rate
sl measurements provide stronger constraints on
Northwest  radiative forcing from aerosol-cloud interactions?

Acknowledgement: discussions with Johannes Mulmenstadt, Sam Silva

* Previous studies show that measurements of aerosol
and CCN provide only small constraint on ERF_
(shown at right; Regarye et al., 2020)

« Can we use EPCAPE to evaluate whether process
rate observations (e.q., rain rate) provide stronger
constraints on ACI than state variable observations
(e.q., thermodynamic structure)?

Approach:

=™ - Build and emulate (ML) a perturbed parameter
ensemble (e.g., from LES & single-column model)

 Potential observable variables to use as constraints:

= Rain rate (from multiple disdrometers) [P AR
= CCN # (CCNC); total particle # (CPCF, CPCU) ERFoe (W m~)

= Turbulence (Doppler Lidar) R t al. (2020): .
: . constraints
= Thermodynamic structure (balloon-borne sondes) egarye etal. ( ) |
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Thank you




Chemically-resolved number size distribution
Selected stations, seasonal cycle
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Tools and
approaches

For studying aerosol sources and long-range
transport, and ACI impacts on climate:

E3SMv1 RRM: high-resolution (25 km) simulation over
the continental United States (extending past coasts)

CONUS RRM surface temperature

re [K]

Figure: Aishwarya
Raman

For studying boundary-layer turbulence and cloud
processes:

 Single-column E3SM
* Doubly-periodic E3SM
And comparisons of both with LES simulations



\%,/ Science question 2: Can we separate the roles of
L aerosol and meteorology in determining cloud
Northwest  properties in marine and continental airmasses?

» Past approaches include:
= Examine correlations between locally-observed aerosol and meteorological variables

= Use air quality variables and wind direction to screen for “marine air” (e.g., by applying
thresholds for pollution concentrations)

 Limitations:
= Local observations lack air mass history information

= Difficult to distinguish time periods that are impacted by continental air that has
recirculated over the ocean
v This air has a mixture of continental and marine influences ...
v ... on aerosol state, and
v’ ... on atmospheric thermodynamic state (e.g., boundary layer structure)
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Impacts of mixing
state on activation

(Riemer et al., 2019, Rev. Geophys.)
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