

Long-Term Aerosol Chemistry Data at SGP and Organic Aerosol VAP Development

Qi Zhang University of California, Davis

June 24, 2021 Breakout Session, ARM/ASR 2021 Virtual Joint Meeting

Organics Dominate PM₁ Mass at SGP

Organics Dominate PM₁ Mass at SGP

Organic Aerosol Value Added Products

- **Goal**: To represent the enormously complex atmospheric OA chemistry as <u>lumped</u> <u>descriptions of a limited number of components</u> that may be related to distinct sources, physicochemical properties, and atmospheric processes.
- Methodology: Multivariate statistical analysis of ACSM / AMS data.
 - Rolling window strategy for long term data analysis
 - Small chunk of MS matrix, continue roll over on time axis
 - Better capture time-dependent variations of factor profiles
- Assumption: ACSM/AMS organic aerosol data matrix is comprised of the linear combination of OA components with constant profiles that have varying contributions across the dataset.

• Products:

- Mass concentration time series of OA factors (OA_i) ; $\Sigma(OA_i) \approx Organics$
- Mass spectra of OA components that bear information of their distinct chemical properties, e.g., O/C, H/C, OM/OC

OAComp VAP

Atmospheric Environment 106 (2015) 43-55

Contents lists available at ScienceDirect

Atmospheric Environment

Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM)

Caroline Parworth ^a, Jerome Fast ^b, Fan Mei ^b, Tim Shippert ^b, Chitra Sivaraman ^b, Alison Tilp ^c, Thomas Watson ^c, Qi Zhang ^a. *

- * Department of Environmental Toxicology, University of California, 1 Shields Ave., Davis, CA, 95616, USA
- b Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- 6 Brookhaven National Laboratory, Upton, NY, 11973, USA

HIGHLIGHTS

http://www.sciencedirect.com/science/article/pii/S1352231015000837

- · Realtime measurements of non-refractory submicron aerosols were conducted at SGP.
- Diurnal, weekly, monthly, and seasonal variations of aerosol composition are reported.
- Two types of oxygenated organic aerosols and biomass burning OA were determined.
- Enhanced nitrate during winter was due to transport of NO_x and NH₃ combined with cooler temperatures.

Rolling Window PMF Methodology

- Standard pretreatment method applied (Ulbrich et al., 2009 & Zhang et al., 2011)
- Rolling window size = 2 weeks
 - b/c contains enough data to capture dynamic variations of aerosols and is representative of avg. lifecycle of aerosols in atmosphere
- Data increment is 1 day until end of data reached
- 3 factor solutions for this rural site:
 - BBOA and two types of OOA

https://www.osti.gov/biblio/1226569-organic-aerosol-component-oacomp-value-added-product

- PMF was performed on 18 months of data (Nov. 2010 – Apr. 2012) at SGP
- Three OA factors were resolved
 - low-volatile oxygenated OA (LV-OOA)
 - semi-volatile oxygenated OA (SV-OOA)
 - biomass burning OA (BBOA).

 f_{43}

Applications of the Organic Aerosol VAP

- Addressing the lifecycle processes of atmospheric OA.
 - Temporal, diurnal, and seasonal variations
 - Correlations with tracer compounds
 - size distributions..., integrated analysis
- Addressing the radiative properties of OA.
 - Surrogates (e.g., O/C) for hygroscopicity and/or volatility.
 - Correlations and intercomparison with aerosol optical and radiative measurements.
- Validation and evaluations of models