

Lidar Breakout Session R. K. Newsom (PNNL), R. Krishnamurthy (PNNL), V. Ghate (ANL) 11:00 am – 1:00 pm 22 June 2021

- 11:00 am 11:30 am Introduction and instrument updates
 - Raman, Doppler, Ceilometers, MPLs (Newsom)
 - New Capabilities for the ARM High Spectral Resolution Lidar (Bambha)
- 11:30 am -12:40 pm Short Talks on applications (10 min each)
 - Robert Jackson: "ARMing The Edge: Edge Computing Demonstration Project for ARM"
 - **Damao Zhang:** "Development of the Best Estimate Planetary Boundary Layer Height Value-added Product"
 - Raghavendra Krishnamurthy: "Estimating PBL height from Doppler lidar observations using machine learning"
 - Erol Cromwell: "The Micropulse Lidar Cloud Mask Machine Learning Value-Added Product"
 - Yufei Chu: "PBL analysis"
 - Hailing Xie: "Aerosol retrievals with MPL and HSRL data at the NSA"
 - Virendra Ghate: "Turbulence in The Marine Boundary Layer and Air Motions Below Stratocumulus Clouds as Observed at The ARM Eastern North Atlantic Site"
- 12:40-1:00 pm **Discussion**

What's new with the ARM Ceilometers and **Micropulse Lidars?**

ARM Ceilometers *New PBL Height estimates*

- Vaisala has upgraded their ceilometer software to include PBL height estimates in addition to the traditional cloud-base-height estimates.
- New datastream = ceilpblht
 - Available from all sites with ceilometers
 - Reports up to 3 candidate PBL height estimates for each profile
 - Reports up to 3 cloud-base-height measurements per profile (max height = 7.7km)
- See Vic's poster:

https://asr.science.energy.gov/meetings/stm/posters/pdf/2021/P002687.pdf

The ARM MicroPulse Lidars (MPLs) Improved overlap correction

- To improve performance in the near-field, ARM is testing a wide-field-of-view receiver (WFR) for the MPLs.
 - The WFRs are installed on top of the MPL telescope (as shown)
 - Requires careful boresighting of the WFR
 - Currently used on the AMF1 and AMF2 MPLs
- The WFRs enable estimation of the overlap correction for the narrow-field-of-view.
- The overlap corrections obtained using the WFR demonstrate a significant improvement compared to the vendor-provided corrections of the past.
- See Paytsar's poster for more details: https://www.orau.gov/support_files/2021ARMASR/posters/P002714.pdf

What's new with the ARM Raman Lidars?

ARM Raman Lidars

- ARM currently operates 3 Raman Lidar Systems
 - SGP C1 since 1996
 - ENA C1
 - Since 2015
 - 2010 to January 2015
 - AMF3 (Oliktok)
 - Since 2014
 - To be redeployed to SEUS in FY21/22
- All systems were built by Sandia, and all use similar design
- Measurements of:
 - water vapor mixing ratio
 - temperature
 - aerosol and cloud properties (extinction, backscatter, depolarization ratio, etc...)

Previously deployed at TWP C3 from December

ARM Raman Lidars Specifications

Transmitter

- wavelength = 355 nm
- pulse rate = 30 Hz
- pulse energy = 300 mJ
- Receiver:
 - Nine Detection channels
 - Wide field of view
 - ► H₂O at 408 nm
 - ▶ N₂ at 387 nm
 - Elastic at 355 nm
 - Narrow-field-of-view
 - ► H₂O at 408 nm
 - ▶ N₂ at 387 nm
 - ► Copol at 355 nm
 - Depol at 355 nm
 - "high J" rotational near 353 nm
 - "low J" rotational near 354nm"

Raman Lidar water vapor mixing ratio VAP

Datastream: rlprofmr2news10m

- Profiles of water vapor mixing ratio
- Calibrated using radiosondes
- Runs at SGP, ENA and OLI
- Relevant variable names:
 - ✓ mr_merged
 - ✓ mr_merged_err (estimated random error)
- Users should perform QC
 - Relative error = mr_merged_err/mr_merged
 - Reject values that exceed a prescribed relative error threshold
 - Plots on the right illustrate the effect of using a threshold of 50%
 - One can also screen values above the cloud base height

20 15 10 ⁻D 9 -D 9 -D

15 21 24

Raman Lidar temperature VAP

z (km)

- Datastream: rlproftemp2news10m
 - Profiles of temperature
 - Calibrated using radiosondes
 - Runs at SGP, ENA and OLI
 - Relevant variable names:
 - ✓ temperature
 - ✓ temperature_err (estimated random error)
- Users should perform QC
 - Relative error = temperature_err/ temperature
 - Reject values that exceed a prescribed relative error threshold
 - Plots on the right illustrate the effect of using a threshold of 5%
 - One can also screen values above the cloud base height

Raman Lidar Aerosol and Cloud Properties VAP Feature detection and EXtinction (FEX)

- Datastream: rlproffex1thor.c0
 - Profiles of aerosol backscatter, extinction, depolarization ratio, lidar ratio, etc... @ 355nm
 - Operational at SGP, ENA
 - Now operational at Oliktok, see Duli's poster (session 1): https://www.orau.gov/support_files/2021ARMASR/post

ers/P002828.pdf

- Use the feature mask
 - Bit-packed field that identifies a region as either
 - ✓ Aerosol
 - ✓ Liquid cloud
 - ✓ Ice cloud
 - ✓ Horizontally oriented ice

AMF3 Raman Lidar (olirIM1) Uptime

October 2015 to November 2019, the final numbers

Uptime from 20151116 to 20191101 = 25.91 %

12

Uptime for the SGP and ENA Raman Lidars

since 1 Jan 2018

Uptime from 20180101 to 20210525 = 83.99 %

Raman Lidar Issues

- Both the ENA and SGP RLs are showing a gradual degradation in sensitivity
 - Sensitivity = peak-background
 - ✓ Pulse energy
 - ✓ Receiver characteristics
 - ✓ Atmosphere

- The sensitivity loss is larger at SGP
 - Apparent in the last 3+ years of data
 - Seen in all channels
- Time for a tune-up
 - Refurbish telescope?
 - Replace degraded optical components in the receiver
 - Realignment

Other News Concerning the ARM RLs

- VAPs that are currently under development (using RL data)
 - New PBL height VAPs
 - ✓ Stick around for Damao's talk later in this session
 - New Cloud phase VAP
- Examining methods for improving calibration of WVMR and temperature using machine learning

✓ Stick around for Raghu's talk later in this session

What's new with the ARM Doppler Lidars?

ARM Doppler Lidars

- Doppler lidars (DL) are operated at all fixed and mobile sites, including a network of five systems at SGP.
- The DLs provide time- and range-resolved measurements of:
 - Radial (line-of-sight) velocity
 - Attenuated aerosol backscatter
 - Wideband signal-to-noise ratio
 - Spectral width new!
- Current mode of operation is pretty simple
 - PPI scans every 10-15 minutes
 - Vertical stare otherwise

ARM Doppler Lidars

- All Systems
 - Manufactured by Halo Photonics
 - 1548 nm
 - Class 1M
 - Nyquist velocity = ±19.4 m s⁻¹
- Four different models: Pro, SL, XR, and XR+

Doppler Lidar Instrument Status

- SGP Network
 - C1 (XR), E32(SL), E37(SL), E39(SL) and E41(SL)
 - Frequent failures have resulted in significant downtime at some facilities
 - In FY20 an XR+ system was procured for SGP as a spare unit
 - ✓ Swapped with the AMF2 DL (Pro) for the SAIL campaign because Dan wants to scan
 - ✓ This will enable scanning during SAIL.
 - ✓ The AMF2 DL (Pro) is now operating at SGP E39.
- NSA C1 DL (Pro) Very stable and continues to perform well
- ENA C1 DL (SL) Very stable and continues to perform well
- AMF1 DL (SL) Functioning well. Will be deployed for TRACER

Doppler Lidar Instrument Status

- AMF2 DL
 - Halo Pro (profiling lidar)
 - Procured in FY19
 - MOSAIC was the first deployment
 - Developed and implemented motion-correction algorithm
 - See Rob's poster on Doppler lidar measurements during MOSAIC: https://www.orau.gov/support_files/2021ARMASR/posters/P002785.pdf
 - The AMF2 DL (Pro) is now operating at SGP E39
- AMF3 DL
 - This system has not been working well. Will be shipped to PNNL for evaluation
 - To be redeployed to either SEUS or SGP.
- Current and Planned Procurements
 - FY21 (in progress): 2 XR+ systems for SGP and/or SEUS
 - FY22 (planned): 2 XR+ systems for SGP and/or SEUS

Other News Concerning the ARM DL and RLs

- Development of a new PBL height VAP (ENG0000893)
 - Stick around for Damao's talk later in this session
 - Estimating PBL height from Doppler lidar data using machine learning, "On the estimation of boundary layer heights: A machine learning approach" by R. Krishnamurthy et al., Atmos. Meas. Techniques, June 2021.
- ECREASTUDY campaign at SGP C1
 - Fall of 2020
 - Collocated measurements from
 - \checkmark Two Doppler lidars (C1 + Spare)
 - High-temporal-resolution wind and vertical velocities
 - Enables retrieval of TKE flux profiles
 - See Raghu's poster: https://asr.science.energy.gov/meetings/stm/posters/pdf/2021/P002757.pdf
 - ✓ Raman lidar + Upgraded NSA HSRL
 - Enables retrieval of aerosol microphysics

