Constraining autoconversion and accretion processes using ARM observations and machine-learning techniques

Christine Chiu

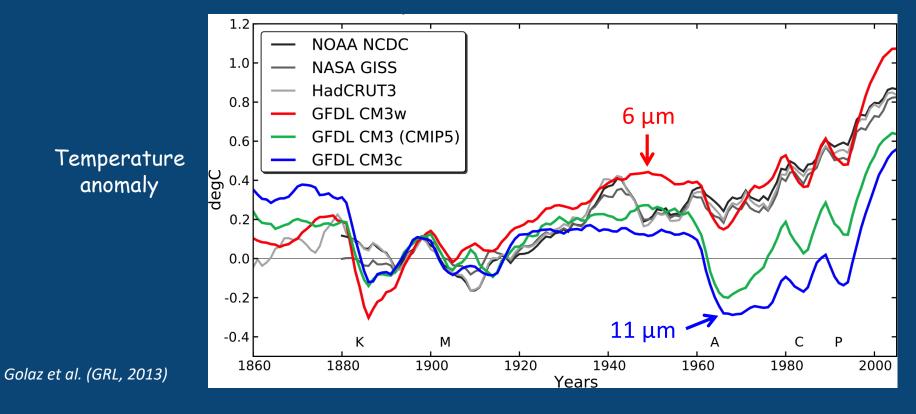
Colorado State University

Kevin Yang, Peter Jan van Leeuwen, Shashank Joshil, V. Chandra (CSU) Graham Feingold, Rob Wood, Yann Blanchard, Fan Mei, Jian Wang ARM G1-Team

Autoconversion and accretion processes play an important role in warm rain formation

- Warm rain has a great impact on Earth's radiation and water budget
- Related to many outstanding issues in models
 - *the transition from stratocumulus to cumulus*
 - drizzle too frequent and too light
 - Large inter-model spread in precipitation rate in marine boundary layer cloud regimes

Climate system is highly sensitive to precipitation onset parameter



How can we better constrain autoconversion and accretion rates from observations?

<u>Better understanding</u>

of the relationships between the process rate and cloud/drizzle properties

Better cloud and drizzle retrievals

from remote sensing observations

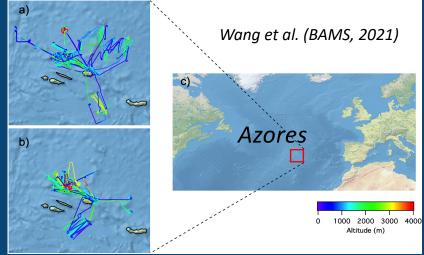
<u>A long term record of autoconversion and accretion rates</u>

for climatology and process studies

(1) Use in-situ cloud drop size distributions (DSD) and machine learning techniques

- Analysed a total of ~93,000 in-situ cloudy DSD (90% drizzling)
- Using the observed DSD as the initial condition, propagating the DSD forward in time for 10 min with the stochastic collection equation
- 10.7M data points for training and 2.5 M for testing

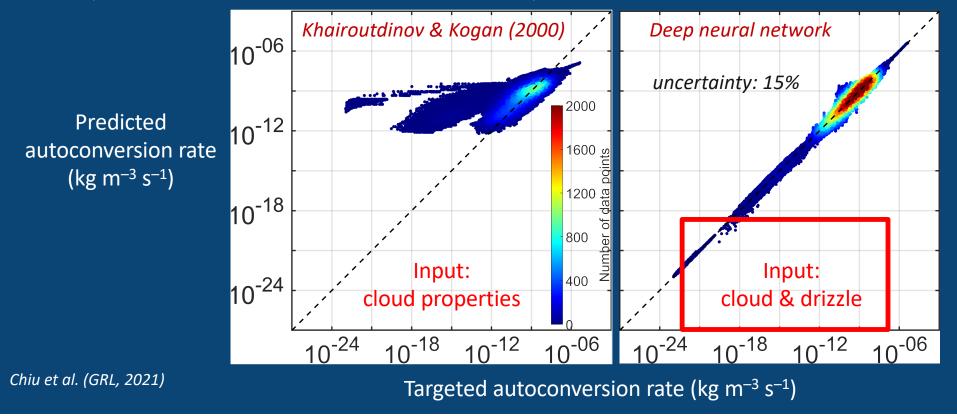
ACE-ENA field campaign (summer 2017 and winter 2018)



Chiu et al. (GRL, 2021; https://doi.org/10.1029/2020GL091236)

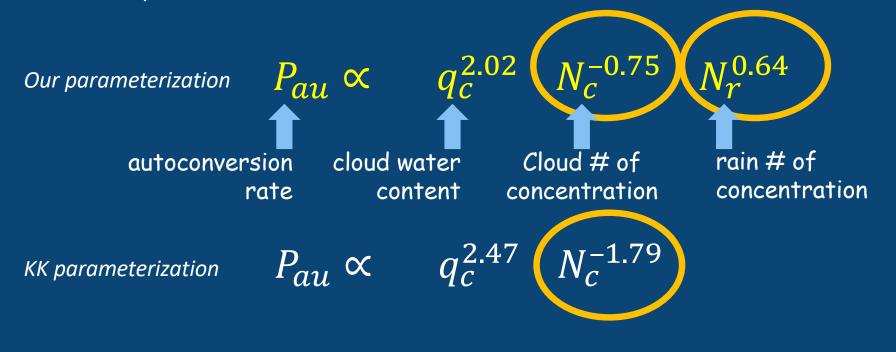
Estimate cloud process rate from Artificial Neural Network

 Use deep neural network with 8 hidden layers and 1024 nodes in each layer to train/test the dataset and make predictions



Drizzle number concentration is critical for quantifying autoconversion rate

• Drizzle number concentration contains information on the width and evolution of drop size distributions



The importance of drizzle number concentration is confirmed by theoretical analyses

• Using the stochastic collection equation and the kernels of Long (1974):

Analytical derivation $P_{au} \propto q_c^2 N_c^{-1} N_r$ + other terms

Our parameterization $P_{au} \propto q_c^{2.02} N_c^{-0.75} N_r^{0.64}$

• In the analytical expression, the first term is the one closest to P_{au} for most of the time!

We need to know both cloud and drizzle properties

- Use cloud radar, lidar, and shortwave radiation measurements
- Use an ensemble retrieval framework to find the best estimates of cloud and drizzle number concentration, water content, and drop size

Fielding et al. (2015); Joshil et al. (2020); Wang et al. (BAMS, accepted)

COLORADO STATE Applying machine learning models to ACE-ENA obs. 20 Strong inversion, well mixed, Persistent Sc deck with drizzle 07/18/17 dBz Height (km)-40 UTC (hrs) 12 14 8 10 *Retrieving cloud and drizzle properties* Machine learning models 10^{-10} 2 autoconversion rate (g/cm3/s) 10⁻¹² Height (km) 10⁻¹⁴ 10⁻¹⁶ 10⁻¹⁸ 10⁻²⁰ 10⁻²² 10⁻²⁴ 0 10 10.5 11 11.5 UTC (hour) 10

Summary

- We have trained machine learning models by in-situ cloud data to predict autoconversion and accretion rates with uncertainty of 15% and 5%, respectively. <u>These models are freely available in the ARM Archive and Github</u> (see https://doi.org/10.1029/2020GL091236)
- Our analyses show that drizzle number concentration is critical in quantifying autoconversion rate, which is surprising!
- The new machine learning models have been applied to our ACE-ENA retrievals, producing reasonable autoconversion and accretion rates for further analyses.