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Autoconversion and accretion processes play an 
important role in warm rain formation

• Warm rain has a great impact on Earth’s radiation and water budget

• Related to many outstanding issues in models
– the transition from stratocumulus to cumulus
– drizzle too frequent and too light
– Large inter-model spread in precipitation rate in marine boundary layer cloud regimes
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Climate system is highly sensitive to precipitation onset 
parameter

Golaz et al. (GRL, 2013)
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How can we better constrain autoconversion and 
accretion rates from observations?

Better understanding
of the relationships between the process rate and cloud/drizzle properties
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Better cloud and drizzle retrievals
from remote sensing observations

+

A long term record of autoconversion and accretion rates 
for climatology and process studies



(1) Use in-situ cloud drop size distributions (DSD) and 
machine learning techniques

• Analysed a total of ~93,000 in-situ 
cloudy DSD (90% drizzling)

• Using the observed DSD as the initial 
condition, propagating the DSD forward 
in time for 10 min with the stochastic 
collection equation 

• 10.7M data points for training and 2.5 M 
for testing
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Chiu et al. (GRL, 2021; https://doi.org/10.1029/2020GL091236 )

Wang et al. (BAMS, 2021)

Azores

ACE-ENA field campaign 
(summer 2017 and winter 2018)



Estimate cloud process rate from Artificial Neural Network
• Use deep neural network with 8 hidden layers and 1024 nodes in each 

layer to train/test the dataset and make predictions

Predicted 
autoconversion rate 

(kg m–3 s–1)

Targeted autoconversion rate (kg m–3 s–1) 6
Chiu et al. (GRL, 2021)

Khairoutdinov & Kogan (2000) Deep neural network

Input:
cloud & drizzle

Input:
cloud properties

uncertainty: 15%



Drizzle number concentration is critical for 
quantifying autoconversion rate

• Drizzle number concentration contains information on the width and evolution 
of drop size distributions
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The importance of drizzle number concentration is 
confirmed by theoretical analyses

• Using the stochastic collection equation and the kernels of Long (1974):

• In the analytical expression, the first term is the one closest to 𝑃!" for most 
of the time! 
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Analytical derivation



We need to know both cloud and drizzle properties

• Use cloud radar, lidar, and shortwave radiation measurements

• Use an ensemble retrieval framework to find the best estimates of cloud and 
drizzle number concentration, water content, and drop size 
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Fielding et al. (2015); Joshil et al. (2020); Wang et al. (BAMS, accepted) 



Applying machine learning models to ACE-ENA obs.

0

2
07/18/17

Strong inversion, well mixed, Persistent Sc deck with drizzle

8 12 14UTC (hrs)

10

Height 
(km)

20 

–40 

dBz

10

Retrieving cloud and drizzle properties Machine learning models

autoconversion rate (g/cm3/s)



Summary
• We have trained machine learning models by in-situ cloud data to predict 

autoconversion and accretion rates with uncertainty of 15% and 5%, respectively.  
These models are freely available in the ARM Archive and Github (see 
https://doi.org/10.1029/2020GL091236)

• Our analyses show that drizzle number concentration is critical in quantifying 
autoconversion rate, which is surprising!  

• The new machine learning models have been applied to our ACE-ENA retrievals, 
producing reasonable autoconversion and accretion rates for further analyses.
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