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Introduction

* The significance of the roughness sublayer
(RSL) to a plethora of physical, chemical,
and biological processes is not in dispute.
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Figure from: https://doi.org/10.1016/}.ijft.2021.100077
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Introduction

Focus here on RSL ABOVE CANOPIES — where
multiple eddy types dominate biosphere-atmosphere
exchange

Inertial layer
(law of the wall)

REGION TII
2-3 h
'Roughness Sublayer (RSL)
_ Displaced wall_ K_ _ REGION I
. REGION 1
J
SIS/

Figure revised from Poggi et al. (2004)



Roughness sublayer correction

» Correction increases mean velocity U
relative to its log-law extrapolation
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Roughness sublayer

e Correction to the ‘law of the wall’:

dUk(z—-d) (z )
dZ 0. — ¢RSL h,

* Log-law recovered when ¢rs;(() = 1

Empirical
 Current approach: coefficient
_ L\
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_Thickness of the_RSL



Problem:

* Many ¢ps; models proposed - but miss the
key mechanism they purported to represent-
energetics of eddies.

Objective:

* Derive ¢pq; from energetics of turbulent
eddies and compare with experiments in
non-ideal settings (e.g. Amazonia).



Model Co-spectra from simplified budget

Eddy sizes or scales considered using the co-spectrum:
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Two-term co-spectral budget

Simplify: High Reynolds number, stationary and
equilibrium co-spectral budgets (i.e. turbulent
transfer terms ignored).

Production of covariance
E,,, (k) at scale k:

alu

E WW(k) T
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A Rotta type closure for

Models the universal tendency of all turbulent flows
to return to isotropy at small scales

Classical Isotropization

Rotta term of the production
SLOW PART FAST PART

du Production by
dz FWW (k) mean gradients

= Onsager (1948) relaxation time scale

= Rotta constant (~1.8).

= Coefficient related to isotropization of production

Rapid Distortion Theory predicts = 3/5 (Pope, 2000).
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Stationary and equilibrium solution to
the two-term co-spectral budget

This simplified budget relates the co-spectrum to
the vertical velocity spectrum E,,,, (k).

Fun() =+ 2 [ i 00

= Onsager’s (1948) relaxation time scale = k=2/3¢~1/3

F,., (k) =Vertical velocity energy spectrum,
must be externally supplied (measured or assumed)



Shape of F, (k)

For canonical boundary layers (in the inertial layer):
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Albert Townsend’s hypothesis
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The integrated co-spectral budget

1/2
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Upon integration yields the Prandtl-von Karman velocity profile:
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Estimating RSL correction

DETAILED MODEL - Measured F,,, (k)

Grs() = w2 J\1-=Cuy) [ ©(k) E,,, (k)dk

0

SIMPLIFIED MODEL.:
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Emergence of a ‘macro-dissipation’ length

in dpsy,(.)
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u
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This is a new scale for RSL that differs from the
‘canonical’ shear length scale derived from mixing layer
analogy (L) put forth by Raupach, Finnigan and others.

| k - £ 258
[ « h
45—




Experiments
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Amazon Tall Tower Observatory

At both sites: h=35 m and LAl =6

GoAmazon: From Fuentes et al. (2016)
ATTO: https://commons.wikimedia.org/wiki/File:Amazon_Tall_Tower_Observatory.jpg



GoAmazon

ATTO

<+ 40
+ 55
+ 81

GoAmazon

- ATTO
-~ GoAmazon

Fuw(K)/|<uws|

107" 10° 10" 10° 10107 10° 10" 10® 10°107" 10° 10" 10° 10°
kz

GoAmazon

Fuw(K)/|<uws|

107" 10° 10" 10° 107" 10° 10" 10° 107" 10° 10" 10°
kz



Breakpoints in spectra (ATTO)
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Model comparisons

dU k(z — d) DETAILED MODEL

dz u, = Prse Uses measured F,,, (k)
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Conclusions

* An eddy viscosity that accommodates energetics of
turbulence - analogous to the fluctuation-
dissipation theorem in statistical mechanics

v, = (1 ;f’”) fo ) (k) E,,, (k)dk.

e Emergence of a macro-scale dissipation length (L)
that explains transitions in F,,,, (k) as well as RSL
correction functions (pgg;).

e Derived ¢rg; appears robust to non-ideal
conditions at the two forested sites in Amazonia.

e Future work: include thermal stratification
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Integration of co-spectrum across all k

du Integration limit

1U 8

Fyu (k) = [dZ Fyw (k)] applicable for
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Large scales Inertial scales

(attached) (detached)

Eyw (k) = Eyw(k) =
COEZ/3ka—5/3 C,e2/3k=5/3

Assume turbulent kinetic energy (TKE) budget is in equilibrium so that
dU
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Dissipation of TKE = Production of TKE
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Solution for the inertial subrange

(known in ISR)

Fpy (k) = C,e?/3k=5/3 (k) = k=2/3¢-1/3
Fy (k) = —— 10 C% 0
Wu( )_ dz WW( )
1—-C dU |
Fyu(k) =1, L 17 el/3)=7/3

NOTES:

If spectrum of vertical velocity scales as -5/3, then the co-spectrum scales as
-71/3 — consistent with experiments and Lumley’s (1967) arguments.

Also suggestive that turbulent transfer term T,,,, (k) may be less important
if a -7/3 power-law prevails in co-spectrum.



Comparison to Lumley (1967)

dU
— _ 1 .-1/34,-7/3 Lumley’s result
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This result establishes a link between the similarity
constant in the Lumley’s co-spectrum and the ‘collage’ of well-
established constants in turbulence.



Support for the -7/3 co-spectral exponent

Field Experiments (Kansas) Lab Experiments (NASA)
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