Adjustments to the law of the wall above an Amazonian Forest explained by a spectral link

Gabriel Katul^{1,*}, Luca Mortarini², and Marcelo Chamecki³

¹Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina, USA;

²Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Torino, Italy;

³Department of Atmospheric and Oceanic Science, University of California,

Los Angeles, California, USA

Other Collaborators:

Brazil: Dias Jr., C.Q., Dias, N., Manzi, A., Araujo, A. (multiple institutions)

Italy: Cava, D. (CNR); Germany: Sorgel, M. (MPI)

*Presentation for the Warm Boundary Layer Processes working group for the ASR program ARM/ASR - PI meeting, Washington DC, October 27, 2022 (email: gaby@duke.edu).

Acknowledgement: Department of Energy, Office of Science (DE-SC0022072)

Introduction

 The significance of the roughness sublayer (RSL) to a plethora of physical, chemical, and biological processes is not in dispute.

Figure from: https://doi.org/10.1016/j.ijft.2021.100077

Introduction

Focus here on **RSLABOVE CANOPIES** – where *multiple eddy types* dominate biosphere-atmosphere exchange

Roughness sublayer correction

• Correction **increases** mean velocity U relative to its log-law extrapolation

Roughness sublayer

• Correction to the 'law of the wall': $\frac{dU}{dz} \frac{\kappa(z-d)}{u_*} = \phi_{RSL} \left(\frac{z}{h}, \dots\right)$

- Log-law recovered when $\phi_{RSL}(.) = 1$
- Current approach:

Empirical coefficient

$$\phi_{RSL}(.) = 1 - exp \left| - \right|$$

$$\left[-\frac{a}{z^*}\right]$$

Thickness of the RSL

Problem:

• Many ϕ_{RSL} models proposed - but miss the key mechanism they purported to representenergetics of eddies.

Objective:

• Derive ϕ_{RSL} from energetics of turbulent eddies and compare with experiments in non-ideal settings (e.g. Amazonia).

Model Co-spectra from simplified budget

Eddy sizes or scales considered using the co-spectrum:

Two-term co-spectral budget

<u>Simplify</u>: High Reynolds number, stationary and equilibrium co-spectral budgets (i.e. turbulent transfer terms ignored).

Production of covariance $F_{wu}(k)$ at scale k:

 $\frac{dU}{dz} F_{ww}(k) +$

$$-\pi_u(k)=0$$

De-correlation due to pressure - velocity interaction (**requires closure at k**)

A Rotta type closure for $\pi_u(k)$

Models the *universal* tendency of <u>all</u> turbulent flows to return to isotropy at small scales

> Classical Rotta term **SLOW PART**

Isotropization of the production **FAST PART**

$$\pi_u(k) = -A_u \frac{F_{wu}(k)}{\tau(k)} - C_{Iu} \left| \frac{dU}{dz} F_{ww}(k) \right| \leq$$

 $\tau(k)$ = Onsager (1948) relaxation time scale

 A_u = Rotta constant (~1.8).

 C_{Iu} = Coefficient related to isotropization of production

<u>Rapid Distortion Theory</u> predicts $C_{Iu} = 3/5$ (Pope, 2000).

Production by

mean gradients

Stationary and equilibrium solution to the two-term co-spectral budget

This simplified budget relates the **co-spectrum** to the vertical velocity spectrum $F_{ww}(k)$.

$$F_{wu}(k) = \frac{1 - C_{IU}}{A_u} \left[\frac{dU}{dz} F_{ww}(k) \right] \tau(k)$$

 $\tau(k)$ = Onsager's (1948) relaxation time scale = $k^{-2/3} \epsilon^{-1/3}$

 $F_{ww}(k)$ = Vertical velocity energy spectrum, must be externally supplied (measured or assumed)

Shape of F_{ww}(k)

For canonical boundary layers (in the inertial layer):

The integrated co-spectral budget

$$\frac{dU}{dz} = \left(\frac{4}{7} \frac{1}{C_o} \frac{A_u}{1 - C_{IU}}\right)^{3/4} \frac{\overline{-(w'u')}}{z}^{1/2},$$

Upon integration yields the **Prandtl-von Karman** velocity profile:

$$U(z) = \left(\frac{4}{7}\frac{1}{C_o}\frac{A_u}{1 - C_{IU}}\right)^{\frac{3}{4}}u_*\log(z) + B$$

The von Karman constant can be estimated

$$\kappa = \left(\frac{4}{7} \frac{1}{C_o} \frac{A_u}{1 - C_{IU}}\right)^{-\frac{3}{4}} \approx 0.36$$
(24/55)(1.5) 3/5

1 2

Estimating RSL correction

DETAILED MODEL - Measured $F_{ww}(k)$

$$\phi_{RSL}(.) = \left(-\frac{\overline{u'w'}}{{u_*}^2}\right) \left(\frac{A_u}{1-C_{IU}}\right) \frac{u_*\kappa(z-d)}{\int_0^\infty \tau(k) F_{ww}(k)dk}$$

SIMPLIFIED MODEL:

$$\phi_{RSL}(.) = \left(-\frac{\overline{u'w'}}{{u_*}^2}\right) \left(\frac{A_u}{1-C_{IU}}\right) \frac{u_*\kappa(z-d)}{\tau_{eff}\,\sigma_w^2}; \quad \tau_{eff} = \frac{2\sigma_w^2}{\epsilon(z)}$$

Emergence of a 'macro-dissipation' length in $\phi_{RSL}(.)$

$$\phi_{RSL}(.) = \frac{1}{2} \left(-\frac{\overline{u'w'}}{{u_*}^2} \right) \left(\frac{A_u}{1 - C_{IU}} \right) \left(\frac{u_*}{\sigma_w} \right)^4 \frac{L_{BL}}{L_d};$$

$$BL = \kappa (z - d); \ L_d = \frac{{u^*}^3}{\epsilon(z)}.$$

This is a new scale for RSL that differs from the 'canonical' shear length scale derived from *mixing layer* analogy (L_s) put forth by Raupach, Finnigan and others.

$$L_s = \frac{U}{dU/dz}$$

Experiments

23 March 2014 to 16 January 2015

GOAmazon (K34)

25 October to 25 November of 2015

ΑΤΤΟ

Amazon Tall Tower Observatory

At both sites: h=35 m and LAI = 6

GoAmazon: From Fuentes et al. (2016) ATTO: https://commons.wikimedia.org/wiki/File:Amazon_Tall_Tower_Observatory.jpg

kz

Breakpoints in spectra (ATTO)

ATTO

10¹

kL_S

kL_d

 10^{4}

Model comparisons

Conclusions

 An eddy viscosity that accommodates energetics of turbulence - analogous to the fluctuationdissipation theorem in statistical mechanics

$$v_t = \left(\frac{1 - C_{IU}}{A_u}\right) \int_0^\infty \tau(k) \ F_{ww}(k) dk.$$

- Emergence of a macro-scale dissipation length (L_d) that explains transitions in $F_{ww}(k)$ as well as RSL correction functions (ϕ_{RSL}) .
- Derived ϕ_{RSL} appears robust to non-ideal conditions at the two forested sites in Amazonia.
- <u>Future work</u>: include thermal stratification

EXTRA SLIDES

Integration of co-spectrum across all k

$$F_{wu}(k) = \frac{1 - C_{IU}}{A_u} \left[\frac{dU}{dz} F_{ww}(k) \right] \tau(k)$$

$$\overline{w'u'} = \int_0^\infty F_{wu}(k)dk = \int_0^{k_a} F_{wu}(k)dk \qquad +$$

Integration limit applicable for $Re_* \rightarrow \infty, \eta \rightarrow 0$ $F_{wu}(k)dk$ k_a

Large scales (attached)

 $F_{WW}(k) = C_o \epsilon^{2/3} k_o^{-5/3}$

$$F_{WW}(k) = C_o \epsilon^{2/3} k^{-5/3}$$

Assume turbulent kinetic energy (TKE) budget is in equilibrium so that

$$\epsilon = -\overline{w'u'}\frac{dU}{dz}$$

Dissipation of TKE = Production of TKE

Solution for the inertial subrange

-1/3

$$F_{ww}(k) = C_o \epsilon^{2/3} k^{-5/3}$$

$$\tau(k) = k^{-2/3} \epsilon^{2/3} k^{-5/3}$$

$$F_{wu}(k) = \frac{1 - C_{IU}}{A_u} \left[\frac{dU}{dz} F_{ww}(k) \right] \tau(k)$$

$$F_{wu}(k) = \left(C_o \frac{1 - C_{IU}}{A_u} \right) \left[\frac{dU}{dz} \right] \epsilon^{1/3} k^{-7/3}$$

NOTES:

If spectrum of vertical velocity scales as -5/3, then the co-spectrum scales as -7/3 – consistent with experiments and Lumley's (1967) arguments.

Also suggestive that turbulent transfer term $T_{wu}(k)$ may be less important if a -7/3 power-law prevails in co-spectrum.

Comparison to Lumley (1967)

$$F_{wu}(k) = C_{uw} \left[\frac{dU}{dz} \right] \epsilon^{1/3} k^{-7/3}$$
$$F_{wu}(k) = \left(C_o \frac{1 - C_{IU}}{A_u} \right) \left[\frac{dU}{dz} \right] \epsilon^{1/3} k^{-7/3}$$

Lumley's result Dimensional analysis

Co-spectral budget

Accepted
range
$$C_{uw} = 0.15 - 0.16 = \left(\frac{1 - C_{IU}}{A_u}C_o\right) = 0.145$$

I.8

This result establishes a link between the similarity constant in the *Lumley's co-spectrum* and the *'collage'* of well-established constants in turbulence.

Support for the -7/3 co-spectral exponent

Field Experiments (Kansas)

Quart. J. R. Met. Soc. (1972), 98, pp. 590-603

Lab Experiments (NASA)

333

551.510.522 : 551.551.8 J. Fluid Mech. (1994), vol. 268, pp. 333-372 Copyright © 1994 Cambridge University Press

Cospectral similarity in the atmospheric surface layer

By J. C. WYNGAARD and O. R. COTÉ Air Force Cambridge Research Laboratories, Bedford, Massachusetts

Local isotropy in turbulent boundary layers at high Reynolds number

By SEYED G. SADDOUGHI AND SRINIVAS V. VEERAVALLI†

Center for Turbulence Research, Bldg 500, Stanford University, CA 94305, USA and NASA Ames Research Center, CA 94035, USA.

