### Mt. Soledad Aerosol Measurements (NCSU, UCLA, UCI, SIO)

DOE-ASR Science Team Meeting October, 2022 Marine Stratus Cloud

San Diego, 2019







## Schematic diagram showing observable cloud processes at Mt. Soledad



Adapted from Wood [2012, Monthly Weather Review]

### Synergy with DOE-EPCAPE Deployment

**AMF 1** 

#### EPCAPE-CCC size distributions, detailed aerosol chemistry, comprehensive CCN

measurements, CDNC estimates



EPCAPE-CCC will provide additional information about the vertical mixing of aerosol, aerosol properties near cloud base, cloud droplet number concentrations, and in-cloud supersaturations.

### Proposed sampling from CVI and Isokinetic Inlet at Mt. Soledad Instrument Contact Description Inlet Brechtel Counterflow Virtual Impactor (CVI) Wheeler Evaporates cloud droplets and provides residual N/A



| Instrument                                                                             | Contact | Description                                                                                             | Inlet      |
|----------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------|------------|
| Brechtel Counterflow Virtual Impactor (CVI)                                            | Wheeler | Evaporates cloud droplets and provides residual<br>particles to other instruments                       | N/A        |
| Brechtel Differential Mobility Analyzer (DMA)                                          | Russell | Number distribution of particles (0.02-0.9 um)                                                          | Switched   |
| *DMT Cloud Condensation Nuclei (CCN) Counter                                           | Petters | CCN number concentration and supersaturation spectra of particles for 0.07-0.6% supersaturation         | Switched   |
| Mini Handix CCN (5)                                                                    | Petters | CCN number concentration and supersaturation spectra of particles for 0.1-1% supersaturation            | Both       |
| Printed Optical Particle Spectrometer (POPS)                                           | Petters | Aerosol number distribution (0.15-3 um)                                                                 | Switched   |
| TSI Aerodynamic Particle Sizer (APS)                                                   | Russell | Number distribution of particles (0.5-10 um)                                                            | Isokinetic |
| Aerodyne High-Resolution Aerosol Mass<br>Spectrometer (HR-AMS) with Event Trigger (ET) | Russell | NR organic, sulfate, nitrate, chloride, ammonium mass fragment concentrations (0.07-0.8 um) every 5 min | Switched   |
| DMT Single-Particle Soot Photometer (SP2)                                              | Wheeler | BC mass and number distribution (0.08-1 um)                                                             | Switched   |
| Aerodyne lodide Chemical Ionization Mass<br>Spectrometer (CIMS)                        | Liggio  | Gas-phase compounds                                                                                     | Switched   |
| Fog Droplet Monitor                                                                    | Chang   | Number size distribution of fog (cloud) droplets                                                        | N/A        |
| DMT Photoacoustic Extinctiometer (PAX)                                                 | Lee     | BC concentration, aerosol light scattering and absorption coefficients                                  | Switched   |
| *Direct-to-Liquid Cloud Droplet OH Burst (DtL-OH)                                      | Paulson | Hydroxyl radical formation by particles using direct-to-<br>liquid sampling and fluorescence            | Switched   |
| *Filters for transition metals and OH burst                                            | Paulson | Soluble metals by ICPMS and OH burst                                                                    | Switched   |
| Filters for FTIR and XRF                                                               | Russell | Organic functional group and element concentrations                                                     | Both       |
| TDCIMS, UHPLC-HRMS) particles                                                          |         | Smith Chemical composition of ultrafine                                                                 |            |
| H/VTDMA<br>volatility                                                                  |         | Smith Ultrafine particle hygroscopicity a                                                               | nd         |

#### Proposes sampling from CVI and Isokinetic Inlet at Mt. Soledad





### Hypotheses to be tested: Chemical Signatures of Cloud Processing

H1: The subset of the aerosol population that is activated to cloud droplets is chemically distinct from the unactivated particles, and its size-resolved chemical composition is further differentiated by adding aqueous-oxidized components that can be measured by single-particle mass fragments.



- Measured (outer circle) and simulated (inner circle) chemical composition for particles collected below cloud and in cloud.
- The simulated in-cloud droplet composition contains more nitrate, more salt, and less BC than is measured in the interstitial aerosol.
- The mixing state was unknown. Single-particle measurements of sulfate, nitrate, and carbon components are needed to accurately initialize simulations.

# Hypotheses to be tested: Influence of gas-phase species on CCN activation

H2: Gas-phase compounds that are removed by denuding will lower the supersaturation required for activation of each particle by enhancing water solubility during the uptake process.



- Humidified ammonium sulfate aerosols were exposed to gasphase methyl glyoxal or acetaldehyde in a Teflon reaction chamber.
- The critical dry diameters observed for each experiment as a function of instrument supersaturation are compared with the ammonium sulfate control to demonstrate the effect of organics.
- The data show a decrease in the activation diameter for particles exposed to methyl glyoxal and acetaldehyde.
- Other gases including nitric acid and semi-volatile organic vapors, such as those formed during secondary organic aerosol formation by oxidation are thought to have similar effects

[Sareen et al. 2013, PNAS]

# Hypotheses to be tested: Aqueous phase production of hydroxyl radicals due to wetting

H3: Particles with longer times between cloud cycles will produce a larger OH burst, and as a result, larger changes to particle chemical composition during cloud cycling.



- Measured production from OH "bursts". The solid line is a typical time-resolved burst from a Fresno stored sample.
- Dashed lines represent the minimum, average, and maximum cumulative concentrations from fresh samples.
- Magenta lines: Uptake of OH(g) into droplets, based on estimates from three cloud chemistry models.
- Green lines: Measured OH(aq) production in authentic cloud and fog water samples from five previous studies

[Paulson et al., 2019, Scientific Advances]

#### **EPCAPE – Ultrafine Particle Properties (EPCAPE-UPP)**



- Who? Ultrafine Aerosol Research Group, UC Irvine (J. Smith, PI)
- When? April 15 June 15, 2023
- Where? Mt. Soledad site
- **Why?** We wish to answer the following questions:
- What is the composition of ultrafine (sub-100 nm diameter) marine aerosol particles?
- How does ultrafine particle composition relate to climatically important properties?
- **How?** We will perform the following measurements:
- Size-resolved chemical composition of ultrafine particles (TDCIMS, UHPLC-HRMS)
- Size-resolved ultrafine particle hygroscopicity and volatility (H/VTDMA)

#### **Exploring aerosol-droplet interactions in fog Rachel Chang, Dalhousie University**



science questions driven by understanding how changes in aerosol population affects droplet properties (e.g. concentration, liquid water, extinction/albedo/visibility)

in a study on the east coast, we linked aerosol concentration to droplet concentration, and droplet concentration to extinction / albedo in the fog

calculated the local albedo in our fog increased 0.55-3.8 x  $10^{-4}$  / added particle / cm<sup>3</sup>