

LASSO-CACTI Scenario for Deep-Convection with Large-Eddy Simulation

25 October 2022

William I. Gustafson Jr.¹, Andrew M. Vogelmann², Mark M. Delgado², Satoshi Endo², Eddie K. Schumann¹, Adam C. Varble¹, & Heng Xiao¹

¹ Pacific Northwest National Laboratory, ² Brookhaven National Laboratory

What is LASSO-CACTI?

- The <u>CACTI field campaign</u> occurred in 2018–2019 in Argentina with a focus on convective clouds and their transitions such as upscale growth
- LASSO = <u>LES ARM Symbiotic Simulation and Observation</u>
- LASSO adds value to ARM observations by using libraries of high-resolution modeling to bridge scale gaps and add context to observations
- ► The data is starting to flow...
 - Beta release made available May 2022
 - Full release coming soon in early 2023

Map of CACTI Deployment in Argentina

Science drivers guide scenario design

ARM

Convective cloud dynamics

- e.g., thermal-like structures, updraft strength, and entrainment; the relationship to critical features like updraft and downdraft mass fluxes, vertical transport, and the shallow-to-deep convective transition
- Convection-environment interactions, e.g., cold pools
- Convective drafts in turbulent flow
- Microphysics-dynamics interactions
 - Especially in the context of cloud-scale eddies and smaller-scale turbulence
- Science drivers chosen to balance relevant science with computational capacity
 - LES resolution governed by cloud core requirements
 - Domain size determines portion of lifespan simulated
 - Limiting ensembles to mesoscale simulations with the potential for a small number of LES ensemble members for specific cases

Case dates target a selection of convective behavior

- Chosen days have convection form and grow within view of ARM's scanning radar
- Identified 20 case dates meeting our criteria
 - Convection ranges from shortlived convection to large MCSs
 - See <u>Vogelmann et al. poster, #66</u>, for list of dates

Some of the mesoscale simulations for different case dates, all plotted at the same time of day, 19 UTC

Mesoscale ensembles for case selection and LES boundary condition choices

- Mesoscale ensembles run for each case date (example for 10-Nov-2018 at right)
 - 33 ensemble members based on ERA5, ERA5 Ensemble, FNL, and GFS Ensemble
 - Nested down to 2.5 km grid spacing
 - Best performing ensemble members identified based on cloud comparison to GOES-16 IR data
 - Down-selected ensemble members get final vetting using bulk CSPAR2 statistics, e.g., 20 dBZ echo-top height

LES domains

- "Ndown" from D02 to D03
- Nesting permits starting domains at different times to save resources and smooth spin-up process
 - D03 starts at 6 UTC
 - D04 can start at 12 UTC
- Primary LES run based on bestperforming mesoscale ensemble member(s)
 - Some additional LES runs for testing other BCs or physics
- ~25 h wall time per model hour on 7168 cores of Cumulus-2

Comparison of 500 hPa Vertical Velocity at Each Grid Spacing

Modeling stages to achieve $\Delta x=100$ m

Stage 1: Mesoscale ensembles with $\Delta x=7.5 \& 2.5 \text{ km}$

For selecting boundary conditions and case selection

► Stage 2: LES setup with ∆x=500 & 100 m
 ■ For selected cases, some with several LES per case

Stage 3: Post-process data to simplify usage

- Mesoscale ensembles have 33 members (20 dates), LES have 2–3 per case (9 dates)
- ► We expect the total dataset for the scenario to exceed 1 PB, possibly approaching 2 PB

Category	Domain(s)	Δx	Frequency	Period	Purpose
Meso	D01, D02	7.5 km, 2.5 km	15 min.	0–24 UTC	Full model state and diagnostics
Bridge	D03	500 m	15 min.	6–24 UTC	Full model state and diagnostics
LES	D04	100 m	5 min.	12–24 UTC	Full model state and diagnostics
Restart	D03 and D04		30 min.		Enable users to do restarts

WRF Model Data

We want to make it as easy as possible for users,

Using these runs will be non-trivial due to the data size!

- Raw output sizes
 - Mesoscale ensemble for D02
 - ~325 GB per ensemble member
 - >100 TB for full set of cases and members
 - LES runs for D04
 - Raw output >35 TB per run
 - >1 PB raw model output for 10 cases & 2 LES/case
 - Subsets add to above sizes

Rough File Sizes for Each Domain

but...

Δx =	D01 7.5 km	D02 2.5 km	D03 500 m	D04 100 m
N _x	130	258	750	2145
N _y	136	306	865	2775
Snapshot Size	0.6 GB	2.8 GB	19 GB	171 GB

Subsets generated in post-processing

ARM

- Goal of reducing file sizes for users not needing whole raw files
- Extra diagnostics provided, e.g., LWP, CAPE, destaggered winds, heights, pressure
- Variable subsets grouped by theme in separate files*:
 - Static data, constant in time like terrain height, 0.1 GB
 - Meteorological state, 28 GB (with staggered variables interpolated to cell centers)
 - Meteorological state for staggered variables, 8 GB
 - Cloud data, 2 GB
 - Surface data, 0.4 GB
- Subsets available on different height coordinates
 - Height above ground level
 - Height above sea level

- Boundary layer data, 5 GB
- Radiation data, 0.2 GB
- Aerosol data, 4 GB
- Tendency data, 10 GB (e.g., microphysics tendencies & process rates)
- Tracer data, 8 GB
 - Pressure levels
 - Raw model levels

* File sizes given are per output time for a typical D04 subset file on raw model levels. Note that a wrfout_d04 is 171 GB.

Multiscale Observational Datasets

Regional: Satellite-based

- Sources
 - VISST: IR brightness temperatures (11.2 μm channel)
- Application
 - Time-dependent areal coverage of the convective cores

Local: Scanning C-Band Radar-based

- Sources
 - CSAPR-2/Taranis
- Applications
 - Locate AMF-storm position within the LES grid
 - Time series of surface rain rates, and of radar echo-top heights (varied dBZ)

Point Measurements

Sondes (ARM & RELAMPAGO)

Skill scores to evaluate simulations

Radar echo-top heights for local convective intensity

Web pages with statistics for beta release simulations

Scoring based on Critical Success Index, Frequency Bias, RMSD

- Ensembles of ~33 members for 20 case dates for mesoscale domains (Δx = 7.5 & 2.5 km)
- Three LES simulations (Δx = 500 & 100 m), ask if you want access to others
- Included files
 - Input data and run directories
 - Raw model output for wrfout and wrfrst files
 - Example subset files for EDA09 member on 29-Jan-2019 and code to do one's own subsets
- ► Animations for GOES-16 infrared and visible data for the 20 case dates
- Skill scores versus Tb and ETH data (see previous slide)
- Example Jupyter notebooks for plotting
- Beta documentation
 - https://discourse.arm.gov/t/lasso-cacti-beta-release-documentation/118
- Contents are evolving as we near the full release

Accessing the beta release...

- Still working out details for accessing LASSO-CACTI via the Bundle Browser and traditional ARM methodologies
- Files currently reside on ARM's Cumulus-2 cluster
- Two methods for access
 - ARM's Jupyterlab server
 - Interactive logins and job submissions on Cumulus-2
- One account works for both methods
 - <u>https://www.arm.gov/capabilities/computing-resources</u>

The production version release

- Hope to release the LASSO-CACTI dataset in early 2023
- What's left to do?
 - Working with ARM Data Center (ADC) to make ARM's infrastructure able to handle 1 PB of model data
 - Storage and recall of files, e.g., filename violations, quantity of datastreams, bundling of files with htar on HPSS
 - Hierarchical DOIs
 - Post-processing of raw model output into subsets and files with appropriate filenames
 - ADC working to develop a modified Bundle Browser to ease user discovery
 - Writing documentation—using a dynamic, online format similar to ReadTheDocs
 - Anticipate some kinks to work through to ease staging of data and user access on Cumulus/Jupyterlab
 - Still seeking improvement for ~4 of the LES case dates
 - Impression is a general bias toward weak convection

Simultaneously starting prototyping for LASSO-ENA...

Join the community! Online forum for LASSO, etc.

Check out the online forum for LASSO: <u>https://discourse.arm.gov/</u>

- For user support, discussing scenario development, and related topics around LASSO and ARM
- Aiming for it to be an online resource for LASSO information and support
- Other ARM topics besides LASSO are also possible ask us if you would like a category added, e.g., for a field campaign or value-added product
- Email LASSO PIs (Bill & Andy) at <u>lasso@arm.gov</u>
- LASSO-CACTI posters this week
 - Gustafson et al., #67
 - <u>Vogelmann et al., #66</u>

\leftarrow \rightarrow C O A https://discourse.arm.gov			🛨 🤇 🤆 Search	⊍ 🕲 🤱 🗉 ≡
ARM			arm.gov Sigr	n Up 💄 Log In 🔍 📃
Welco	ome to th	e ARM	Forum!	× Close
all categories > Latest Top				
Category Getting Started New to the ARM Forum? Learn more here about the	10pics 3	Latest	▲ ▼ Welcome to the ARM Forum!	1 Mar '21
Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Facility, browse FAQs, learn where to go to get more information, and review rules that will help make the forum a helpful resource.			LASSO-CACTI Beta Release Documentation	0 May 17
LASSO This category is devoted to the Large-Eddy Simulation (LES) ARM Symbiotic Simulation and Observation (LASSO) activity. LASSO enhances ARM observations by using LES modeling	3	ę	2022 ARM Radar Listening Sessi Eastern North Atlantic Radars	on - 1 Apr 18
to provide context and a self-consistent representation of the atmosphere surrounding a particular ARM site. General LASSO Discussion LASSO Shallow-Cumulus Scenario LASSO-CACTI Scenario		@	2022 ARM Radar Listening Sessi North Slope of Alaska Radars	on - 1 Mar 31
Radars This category is for discussing all topics (science priorities, scan strategies, data quality, etc) related to ARM's scanning and vertically pointing radars.	3	٢	2022 ARM Radar Listening Sessi Southern Great Plains Radars	on - 1 Mar 29
Uncategorized Topics that don't need a category, or don't fit into any other existing category.	1		LASSO-COGS data now available LASSO Shallow-Cumulus Scenario	ə 0 May '21
Site Feedback ARM welcomes feedback on this forum and how we can make	0		Getting help about ARM Getting Started	0 May '21

16

Extra Slides

Input data

- Using MERIT DEM data for terrain elevation (Yamazaki, GRL, 2017)
 - Raw data at 3", Δx ~ 90 m at equator
 - Smoothing for model stability using ~1 km spatial scale
- Soil initialization with WRF-Hydro to establish a spun-up soil state consistent with WRF physics
 - Continuous run from August 2018 using Δx=2.5 km
 - Driven by ERA5

18

Model physics configuration

Basic physics setup is a derivative of WRF's "CONUS" physics configuration

Physics Option	Number	Name
mp_physics	28	Aerosol-Aware Thompson Microphysics, Aerosol data from GEOS-5 model
cu_physics	6	Modified Tiedtke Cumulus (only $\Delta x=7.5$ km)
ra_lw_physics	4	RRTMG Longwave Radiation
ra_sw_physics	4	RRTMG Shortwave Radiation
bl_pbl_physics	2	Mellor-Yamada-Janjic TKE PBL (only Δx=7.5& 2.5 km)
km_opt	2	1.5 Order TKE SGS (only Δx=500 & 100 m)
sf_surface_physics	2	Noah Land Model

