Clear-air radar observations of upslope
flow structure and variability during CACTI
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Cumuli Over a Mountain Ridge

Cumuli Over Flat Terrain
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Cumulus initiation:

(1) Over flat terrain:
* (Coherent Thermals and Plumes
* Convergence zones

(2) Over Complex Terrain
* Coherent Thermals and Plumes
* Persistent Thermally Driven Circulations
 Maechanically forced ascent

CACTI provides an opportunity to improve our
understanding of these orographic processes and how
the control/covary wit cumulus convection .

Siebesma et al. 2007
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F1G. 1. Sketch of a convective updraft embedded in a turbulent
eddy structure.
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FiG. 1. Schematic depiction of the thermally forced (toroidal) circulation over a heated
mountain under quiescent conditions. This depiction includes some isentropes (red lines), one
isobar (purple line; Zgs, is the height of the 850-mb surface), the CBL top (thick gray line), and
a positive surface SH flux.
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FiG. 1. Schematic depiction of the thermally forced (toroidal) circulation over a heated

mountain under quiescent conditions. This depiction includes some isentropes (red lines), one
isobar (purple line; Zgs, is the height of the 850-mb surface), the CBL top (thick gray line), and
a positive surface SH flux.
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CSAPR clear-air radial velocity observations reveal flow structure
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How can we identify modes of variability in the upslope flow structure spanning the
entire CACTI period?
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How can we identify modes of variability in the upslope flow structure spanning the

entire CACTI period?

Mean Radial Winds

-l

(DT

-10 0 10
Dist. [km]

Mean Flow:

e Shallow east-to-west surface
layer

* Sloping upslope flow

e Shear and westerly flow aloft

EOF-1, 20% Variance
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Modulates East-West Flow
No Diurnal Cycle
Impact flow depth

EOF-2, 14% Variance

: 10 ' 10
Dist. [km]
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* Modulates upslope flow + shear
e Strong Diurnal Cycle
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Is EOF-2 a physical pattern? (Yes)

Composite PC1+ Raw Data
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Composite PC1-neutral Raw Data
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Raw data and anomaly composites for PC2 values that are (a) strongly positive, (b) strongly negative, or (c) near

heutral:

. Positive mode: weak overall flow, modest downslope flow.
. Negative mode: strong upslope flow layer and a sharp shear layer aloft. Positive superposition of the diurnal

slope mode onto the mean state.
. Neutral Mode: is similar to the mean state (near zero anomalies).




How can we summarize cloud processes over

SDC?

07-Jan-2019 14:05:54 UTC
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Visible Cloud

Cold Cloud
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Meridional Cloud Fraction Hovmoller

Clear Sky Congestus
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Cumulus

How does the structure of the upslope flow

vary across convective outcomes?

Mean PC1=25

Mean PC2=87

.
Mean LCL=3444m| |

17-20 UTC composites based on cloud categories:
* Upslope flow deepens with increasing cloud
development
* LCL lowers with increasing cloud development
* Mean upslope layer depth is close to the
LCL for deep convective days (ease of
initiation)
* The strength of the flow does not vary much
e strongest on congestus days

EOF/PC modes and loadings:

 PC1 decreases from shallow to deep days
indicating increasing east-to-west flow in the
mid-levels

 PC2 (thermal mode) increases from clear->
congestus mode, then decreases for deep
mode.




How does the structure of the upslope flow vary with the
strength of the background wind?

Increasing Westerly Flow Aloft

Zonal Winds>=3.3m s~

Flow categories based on terciles of winds aloft from the “mergesonde” data set

Increasing westerly winds aloft yield decreasing upslope penetration and decreased upslope layer depth




How does the structure of the upslope flow vary with the
strength of the background stability?
Increasing Stability (1000-3000 m)
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Stability categories based on terciles of bulk potential temp difference (3000-1000 m)from the

“mergesonde” data set
Increase stability aloft yields decreasing upslope penetration and decreased upslope layer depth




How does the structure of the upslope flow vary with the
?

Increasing Flux

Hs<143W m’ 143Wm" <=H_<202.5W m’ H >-202 5W m'

F .-fw{ m,

Flux categories based on terciles of ECOR sensible heat flux in the mid-morning period (before deep clouds)

No clear or monotonic response to increase sensible heat fluxes I




Summary:

* EOF/PC analysis reveals modes of
variability in the upslope flow over
the SDC

* Thermal forcing/diurnal component
* Non-thermal forcing

* Convective outcomes (clear->deep)
covary with flow depth and LCL
variability

* “Background” wind and stability exert
a strong influence on upslope flow
depth.

o ASR Questions:

m&"? Atmospheric nlareau@unr.edu

System Research



Whats next?

Cloud development as observed by KASACR RHI scans Linking forcing to PC/EO Fs:
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Develop "ARSCL”-like cloud masks for RHI data
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