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Motivation and Objective

• Convection-permitting models (CPM) are the 
future of Earth System Models

• But CPMs have various dynamical and 
microphysical biases

• Deep convection initiation and growth under 
realistic environments are poorly understood, 
near-cloud environmental factors and key 
cloud structures are difficult to observe

• Goal: Better understand processes 
controlling deep convective cloud growth 
under a variety of realistic environmental 
conditions during CACTI through 
developing an observation-model 
integration framework, and ultimately
jointly improve model and observation 
capabilities

Varble et al. (2014)
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OBS

Organized 
Convection 
in GCPMs

Science questions:
1. Are deep convection populations 

and their associated precipitation 
realistic in DYAMOND GCPMs?

2. How well are mesoscale 
convective systems (MCSs) 
represented?

Key findings:
 Diverse range in simulating 

tropical DCC and MCS
 Most models overestimate 

DCC/MCS in Maritime Continents
(MC), but underestimate tropical 
MCSs over continents, 
Indian/Atlantic Oceans, SPCZ

 All models overestimate MCS 
precipitation in MC, but most 
underestimate those in other 
tropical regions
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Examples of Simulated DCC and MCS

• SCREAM simulated a lot more unorganized DCC (“pop corn” convection) and less MCSs than OBS
• DYAMOND models results are quite diverse in the morphology of organized convection

SCREAMOBS



• Most models capture MCS lifetime, 
cloud-shield area and total volume 
rain quite well

• Widespread max cloud-top height 
(min Tb) but generally deeper than 
obs., indicate updraft intensity may 
be too strong over ocean

• All models underestimate PF area 
(stratiform bias is common), 
overestimate rain intensity (too 
much convective rain)
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Feng et al. (2022), in prep.
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MCSs in WRF Show Similar Biases

Zhang et al. (2021) MWR

Short-lived MCSs Long-lived MCSs

• Simulated rainfall biases differ between short-lived and long-lived MCSs 
 biases depends environmental conditions

• Model biases cannot be solely explained by satellite-retrieved rainfall 
uncertainties, as rain gauge comparisons show similar bias with smaller 
magnitude
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Rainfall Biases vs. Rain Rate
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Approach: Convective Cell Tracking Database

• Developed a convective cell tracking database using 
CSAPR radar reflectivity (Feng et al. 2022 MWR): 
 ~6900 tracked convective cells 
 Cell time, location, duration, size, echo-top, merge/split
 Profiles of Ze, ZDR, KDP, rain rate, Dm, etc.
 Parallax corrected NASA Langley GOES-16 cloud product 

matched to tracked cells
 Environmental conditions at CI time based on INTERPSONDE

GOES-16 Satellite

PI Product Available

https://doi.org/10.1175/MWR-D-21-0237.1
https://doi.org/10.5439/1844991
https://doi.org/10.5439/1844991


Continental Convective Upscale Growth Biases 
in WRF during CACTI

• Applied cell tracking to 6-month WRF simulations (3 km)
• CPM tend to over produce convective cells in low MUCAPE environments
• Model fails to simulate observed dependence of cell area growth on MUCAPE when cell 

formations are abundant

Zhang et al. (2022), in prep.
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Opportunities from LASSO-CACTI Simulations

• LASSO offers opportunities to 
understand resolution dependence on 
convective upscale growth in realistic 
environments

• We adapted PyFLEXTRKR to track 
convective cells in LASSO simulations 
at CPM and LES grid spacings

• Tag environmental conditions for each 
tracked cell at CI locations in LASSO

• Multiple LASSO simulations days are 
coming online, large CPM ensembles 
for 20 events (~660 simulations) are 
available: 
https://www.arm.gov/news/blog/post/778
33
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Updraft Width Dependence on Relative Humidity

• Wide updrafts in 2.5 km runs are 
associated with drier mid-level 
RH than in 500 m runs, which 
may suggest updrafts in CPM 
are less sensitive to 
environmental humidity (i.e., 
weaker turbulent entrainment 
effects)

• More work is needed to 
disentangle other processes 
contributing to these differences

Wide cells in 
2.5 km have 
lower RH 
than 500 m

Cell Lifetime-Max Updraft Area at 5 km AMSL

*Narrow cells: ≤ 1/3 updraft area distribution; Wide cells: ≥ 2/3 updraft area distribution

More sensitive to 
mid-level RH (500 m)

Log10(Max Updraft Area at 5 km [km2])
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PyFLEXTRKR Software Package for 
Community Use

• PyFLEXTRKR (Python-based atmospheric feature 
tracking software package)

• Current capabilities:
 Tracking convective cells using radar reflectivity data 

[Feng et al. (2022) MWR]
 Tracking MCSs using satellite (Tb) data, or model 

outgoing longwave radiation (OLR) data, with optional 
collocated precipitation data to identify robust MCSs 
[Feng et al. (2021) JGR]

 Generic 2D objects defined by simple thresholds

• Works on observations and model outputs, 
optimized to run on large datasets, scalable 
parallelization

• Provides visualization scripts, Jupyter notebooks 
for statistical analysis

• Now available: 
https://github.com/FlexTRKR/PyFLEXTRKR

Convective Cell Tracking

MCS Tracking

Feng et al. (2022), submitted

https://doi.org/10.1175/MWR-D-21-0237.1
https://doi.org/10.1029/2020JD034202
https://github.com/FlexTRKR/PyFLEXTRKR


Path Towards Reducing Uncertainties in CPMs
• Develop an observation-model integration 

framework centered around Lagrangian
convective cloud lifecycle

• Build a large, comprehensive convective feature 
tracking database from ARM OBS and available 
CPM/LES in multiple regimes, use observationally-
constrained simulations to understand and improve 
processes contributing to CPM biases

• Example from CACTI-LASSO efforts:
 Radar cell tracking database released: 

https://doi.org/10.5439/1844991
 OBS: will add synoptic forcing, aerosols, and cloud 

vertical structures
 LASSO: matched updraft/downdraft statistics, near-

cloud environments, updraft entrainments

• We welcome collaborations and contributions
Contact: Zhe Feng (zhe.feng@pnnl.gov)

https://doi.org/10.5439/1844991
mailto:zhe.feng@pnnl.gov
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