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Science questions:

1. Are deep convection populations
and their associated precipitation
realisticin DYAMOND GCPMs?

2. How well are mesoscale
convective systems (MCSs)
represented?
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Key findings:

= Diverse range in simulating o
tropical DCC and MCS ol
= Most models overestimate
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DCC/MCS in Maritime Continents =" " 255 - e
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« SCREAM simulated a lot more unorganized DCC (“pop corn” convection) and less MCSs than OBS
« DYAMOND models results are quite diverse in the morphology of organized convection
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\zg/ Model MCS Properties and Interpretations
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 Most models capture MCS lifetime,
cloud-shield area and total volume

o

o

\e}
L

=== SCREAM

= X-SHIELD

rain quite well

Fre%Jency
ol
O
oo

o
o
N
(&

 Widespread max cloud-top height |
(min T,) but generally deeper than and )

obs., indicate updraft intensity may 0 2 4
be too strong over ocean
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* All models underestimate PF area
(stratiform bias is common),
overestimate rain intensity (too
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[ Long-lived MCSs ]
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« Simulated rainfall biases differ between short-lived and long-lived MCSs
- biases depends environmental conditions

« Model biases cannot be solely explained by satellite-retrieved rainfall
uncertainties, as rain gauge comparisons show similar bias with smaller
magnitude
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% Approach: Convective Cell Tracking Database
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* Developed a convective cell tracking database using
CSAPR radar reflectivity (Feng et al. 2022 MWR):

~6900 tracked convective cells

Cell time, location, duration, size, echo-top, merge/split
Profiles of Z,, Zpr, Kpp, rain rate, D, etc.

Parallax corrected NASA Langley GOES-16 cloud product
matched to tracked cells

Environmental conditions at Cl time based on INTERPSONDE

2019-01-25 17:00 UTC

312
300 31.5°S-
288
276
264
22 gpeg
240

Lifetime (ho

32.5°S 1

3°S -

2

Cell Area (km?)

600

N
o
o

N
o
o

Cell Track: 6315

@ Verge
® Spit
B Merge+Split

MUCAPE: 7169 J/kg
0-6km Shear: 23.0 m/s

Duration: 3.75 h
Max Z,: 68 dBZ

Initiation: 17:00 |

JI

2 3
Hour Since Track

170

®
o
Top Temp (K)

190

N
o
o
Min Cloud

210

63.5°W

Composite Reflectivity (dBZ)


https://doi.org/10.1175/MWR-D-21-0237.1
https://doi.org/10.5439/1844991
https://doi.org/10.5439/1844991

‘?{ Continental Convective Upscale Growth Biases
Northwest  IN WRF during CACTI
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* Applied cell tracking to 6-month WRF simulations (3 km)
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Zhang et al. (2022), in prep.

 CPM tend to over produce convective cells in low MUCAPE environments

« Model fails to simulate observed dependence of cell area growth on MUCAPE when cell

formations are abundant
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LASSO offers opportunities to
understand resolution dependence on
convective upscale growth in realistic
environments

We adapted PyFLEXTRKR to track
convective cells in LASSO simulations
at CPM and LES grid spacings

Tag environmental conditions for each
tracked cell at Cl locations in LASSO

Multiple LASSO simulations days are
coming online, large CPM ensembles
for 20 events (~660 simulations) are
available:

https.//www.arm.gov/news/blog/post/778
33

CSAPR2 Radar
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https://www.arm.gov/news/blog/post/77833
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? L . . 75 2%,
may suggest updrafts in CPM More sensitive to | T
are less sensitive to _2.07 mid- |eve| RH (500 m) ------------ N T wi iag-éé-l-lg-,‘n7° c
. . g . i I i
environmental humidity (i.e., e | ; | g L 2.5km have 652
weaker turbulent entrainment 2l I R R sadeT N, LN T lowerRH | /&
_ 1.0 e —— 55 2
* More work is needed to =
disentangle other processes 0sl  Narrow@0m) B wiedEodm. 50 &
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*Narrow cells: < 1/3 updraft area distribution; Wide cells: = 2/3 updraft area distribution



\?/ PyFLEXTRKR Software Package for |
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« PYFLEXTRKR (Python-based atmospheric feature >
tracking software package) H :
+ Current capabilities: ] 3
= Tracking convective cells using radar reflectivity data - g §
[Feng et al. (2022) MWR] o [, &
= Tracking MCSs using satellite (T,) data, or model K
outgoing longwave radiation (OLR) data, with optional = PR, 4k oS 3 E
collocated precipitation data to identify robust MCSs nonl a0 Sl [Py W, . IV
= Generic 2D objects defined by simple thresholds U S
« Works on observations and model outputs, w Fooees
optimized to run on large datasets, scalable gl s\ e

parallelization

* Provides visualization scripts, Jupyter notebooks - | g
for statistical analysis |

» Now available: - 2.
https://github.com/FIexTRKR/PYyFLEXTRKR e o
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https://doi.org/10.1175/MWR-D-21-0237.1
https://doi.org/10.1029/2020JD034202
https://github.com/FlexTRKR/PyFLEXTRKR
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Convection
Initiation

racific . Path Towards Reducing Uncertainties in CPMs
* Develop an observation-model integration Aerosol Properties
framework centered around Lagrangian (ARM (O '?j
convective cloud lifecycle §_
« Build a large, comprehensive convective feature o% :%5
tracking database from ARM OBS and available 0 ©°. °
CPM/LES in multiple regimes, use observationally- >~ ’
constrained simulations to understand and improve | Feature Tracking Database Unscale
processes contributing to CPM biases L Growth

« Example from CACTI-LASSO efforts:

= Radar cell tracking database released: -
https://doi.org/10.5439/1844991

= OBS: will add synoptic forcing, aerosols, and cloud
vertical structures

= LASSO: matched updraft/downdraft statistics, near-
cloud environments, updraft entrainments

Sounding Environments GOES-16 Cloud Properties Vertical Cross Sections

 \We welcome collaborations and contributions
Contact: Zhe Feng (zhe.feng@pnnl.gov)
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