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Cloud dilution

* May be loosely defined as the loss of cloud “adiabaticity” owing to
mixing with surrounding air
* Realized as reduced buoyancy, updraft speed, LWC

* Controlled by rates of entrainment and detrainment and properties of
entrained and detrained air
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Sensitivity to environmental conditions
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* Cloud-layer RH (e.g., Drueke et al 2021)

e Robust positive correlation
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Sensitivity to cloud properties
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The problem

* Correlation does not imply causation

* Cloud vigor vs updraft speed: a “chicken and the egg” problem

* Does vigor control dilution? Or does dilution control vigor? Or do they
mutually interact?

* The latter may imply a positive feedback loop, which could lead to extreme
variability in mixing within cloud field

* For parameterization of cloud-environmental mixing, must resolve
causal controls on entrainment, detrainment, and dilution



Methodology

e LES with cm1: LBA Amazonia case (Grabowski et al. 2006)
* LES cloud ensemble (Kirshbaum 2022) on isotropic 50-m grid (60x60x20 km)

* “Single-cloud” run (SCLD; Morrison et al. 2022): Gaussian surface heat
patches of 10 different sizes (0.1 km -> 1 km)
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Quantifying dilution-related processes

* Based on tracer budget equation, solve for environmental dilution
(traditional) and entrainment/detrainment (semi-direct; sd)
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LES results (1): percentile binning

Binning cores by A.

Small A, (0-33%)
Medium A, (33-66%)
Large A, (67-100%)

* As A increases, dilution, entrainment, and
detrainment all decrease

* Bulk dilution (€) is 2-4 times smaller, with
different vertical structure, than semi-direct
entrainment and detrainment (€,4 and é.y)

e Consistent with Romps (2010) and Dawe and Austin
(2011)
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LES results (I): comparing A_ and w.

Binning cores by A. Binning cores by w,

e Similar results for
A, W, (b.): larger
control
parameter ->
weaker mixing

* Which, if any,
causally
control(s) mixing?

Small (0-33%)
Medium (33-66%)
Large (67-100%)

0 4 8 12 0 4 8 12 0 4 8 12 0 4 8 12



LES results (I1): controlling for A_, w,_

A. (controlling for w,) w. (controlling for A,)

* w, trend more
robust than A,
trend

Small (0-33%)
Medium (33-66%)
Large (67-100%)
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Single-cloud results (1): percentile binning

Binning cores by A. Binning cores by w,

e Similar results for
A, W, (b.): larger
control
parameter ->
weaker mixing

* Which, if any,
causally
control(s) mixing?

Small (0-33%)
Medium (33-66%)
Large (67-100%)




Single-cloud results (I1): controlling for A_, w.

A. (controlling for w,) w. (controlling for A,)

* w, trend again
more robust than
A_trend
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Hypothesis

* What should control €4 and 647
* Horizontal inflow? Not necessarily. Horizontal motions do not lead to
saturation or buoyancy gain (without turbulent mixing)

* Evidence favors the importance of vertical inflow: air in surrounding shell rises
to saturation, joins core (e.g., Dawe and Austin 2011; Savre 2022)

* Simple hypothesis: €.4 roughly depends on a,, within core shell and

mean cloud-core updraft speed (w_)
* Larger g, in shell: greater likelihood of “activating” new core points

* Larger w,: reduced time scale for mixing



Control parameters for €., and o,

LES ensembles (mean over 0-5 km) Single-cloud runs (mean over 0-5 km)

12 . ' ' 12 . . 12 , ' v v 12 v
p=0.74 p=0.875 O p=0.816 p=0.836
p=0.000 O p=0.000 p=0.000 p=0.000
O
9 . 9} * ] 9t " ] 9} *
&7 O - - &7 -
. : o Ly § - O - u
g 6 % £ 6} % - £ 6} 1 2 6} :]*
3 o E; 3 3 ¥ E; 0
w £ o é) w O o O
3 3 3 1 3
F3 ¥
@ #
0 . . . . 0 . . . . 0 : . . . 0 . . . .
0 0.2 0.4 0.6 0.8 1 0 0.1 0.2 0.3 0.4 0.5 0 0.2 0.4 0.6 0.8 1 0 0.1 0.2 0.3 0.4
P(0w)ey /We (kg m™) p(0,0p),, /webe (kg m™?) P(Ow)e /We (kg m™?) p(0,0p), /webe (kg m™)

* Entrainment well described by ratio of exterior o, to w.
* R-value decreases to 0.54 using w_ alone

* Detrainment well described by ratio of core-boundary o, o, to w_ b,

* Common trends, but mean €4 and 8.,40-50% smaller in single-cloud



Conclusions

* Performed LES experiments to quantify sensitivity of bulk €, 8 (and
their “semi-direct” versions) to cloud-core parameters

* Found a greater sensitivity to w. than to A. on a level-by-level basis
* Does this simply reflect that €, 6 control w.? Possibly.

* Hypothesis: semi-direct €., 6.4 can be described by nondimensional
ratios of shell/boundary variance to core mean

* Correlations larger than either parameter alone (not shown)



Future work

* Why does detrainment depend on both w and b while entrainment
depends solely on w?

e Why is entrainment/detrainment so much smaller in “single-cloud”
runs than in LES ensembles?

* Bubble vs plume?

* Still need to test causal hypothesis on single-cloud runs
* |deas are there, just lacking the time



