Cumulus dilution: correlation vs causation

Dan Kirshbaum¹ and Hugh Morrison²

¹McGill University, Montreal, QC

²National Center for Atmospheric Research

Cloud dilution

- May be loosely defined as the loss of cloud "adiabaticity" owing to mixing with surrounding air
 - Realized as reduced buoyancy, updraft speed, LWC
- Controlled by rates of entrainment and detrainment and properties of entrained and detrained air

Sensitivity to environmental conditions

- Cloud-layer RH (e.g., Drueke et al 2021)
 - Robust positive correlation
- Cloud-layer dry stability (e.g., Stirling and Stratton 2012)
 - Negative correlation
- Land—ocean contrast (Kirshbaum and Lamer 2021)
 - Greatly reduced dilution over land

Kirshbaum and Lamer (2021) Observations of shallow cumulus at SGP and ENA

Sensitivity to cloud properties

- Cloud cross-sectional area (A_c) (Khairoutdinov and Randall 2006)
 - Inverse correlation
- Cloud base height
 - Inverse correlation
- Cloud vigor (aka intensity)
 - Inverse correlation with w_c, cloud depth, LWP

Kirshbaum and Lamer (2021) Observations of shallow cumulus at SGP and ENA

The problem

- Correlation does not imply causation
- Cloud vigor vs updraft speed: a "chicken and the egg" problem
 - Does vigor control dilution? Or does dilution control vigor? Or do they mutually interact?
 - The latter may imply a positive feedback loop, which could lead to extreme variability in mixing within cloud field
- For parameterization of cloud-environmental mixing, must resolve causal controls on entrainment, detrainment, and dilution

Methodology

- LES with cm1: LBA Amazonia case (Grabowski et al. 2006)
 - LES cloud ensemble (Kirshbaum 2022) on isotropic 50-m grid (60x60x20 km)
 - "Single-cloud" run (SCLD; Morrison et al. 2022): Gaussian surface heat patches of 10 different sizes (0.1 km -> 1 km)

Quantifying dilution-related processes

 Based on tracer budget equation, solve for environmental dilution (traditional) and entrainment/detrainment (semi-direct; sd)

LES results (I): percentile binning

Binning cores by A_c

- As A_c increases, dilution, entrainment, and detrainment all decrease
- Bulk dilution (ϵ) is 2-4 times smaller, with different vertical structure, than semi-direct entrainment and detrainment ($\epsilon_{\rm sd}$ and $\delta_{\rm sd}$)
 - Consistent with Romps (2010) and Dawe and Austin (2011)

LES results (I): comparing A_c and w_c

Binning cores by A_c

Binning cores by w_c

LES results (II): controlling for A_c, w_c

 A_c (controlling for w_c)

w_c (controlling for A_c)

Single-cloud results (I): percentile binning

Binning cores by A_c

Binning cores by w_c

Single-cloud results (II): controlling for A_c, w_c

 A_c (controlling for w_c)

 w_c (controlling for A_c)

Hypothesis

- What *should* control $oldsymbol{\epsilon}_{
 m sd}$ and $oldsymbol{\delta}_{
 m sd}$?
 - Horizontal inflow? Not necessarily. Horizontal motions do not lead to saturation or buoyancy gain (without turbulent mixing)
 - Evidence favors the importance of *vertical* inflow: air in surrounding shell rises to saturation, joins core (e.g., Dawe and Austin 2011; Savre 2022)
- Simple hypothesis: ϵ_{sd} roughly depends on σ_w within core shell and mean cloud-core updraft speed (w_c)
 - Larger $\sigma_{\rm w}$ in shell: greater likelihood of "activating" new core points
 - Larger w_c : reduced time scale for mixing

Control parameters for $oldsymbol{\epsilon}_{ m sd}$ and $oldsymbol{\delta}_{ m sd}$

- Entrainment well described by ratio of exterior $\pmb{\sigma}_{
 m w}$ to ${
 m w}_{
 m c}$
 - R-value decreases to 0.54 using w_c alone
- Detrainment well described by ratio of core-boundary $\pmb{\sigma}_{
 m w}\,\pmb{\sigma}_{
 m b}$ to w_cb_c
- Common trends, but mean $\epsilon_{
 m sd}\,$ and $\delta_{
 m sd}$ 40-50% smaller in single-cloud

Conclusions

- Performed LES experiments to quantify sensitivity of bulk ϵ , δ (and their "semi-direct" versions) to cloud-core parameters
- Found a greater sensitivity to w_c than to A_c on a level-by-level basis
 - Does this simply reflect that ϵ , δ control w_c ? Possibly.
- Hypothesis: semi-direct $\epsilon_{
 m sd}$, $\delta_{
 m sd}$ can be described by nondimensional ratios of shell/boundary variance to core mean
 - Correlations larger than either parameter alone (not shown)

Future work

- Why does detrainment depend on both *w* and *b* while entrainment depends solely on *w*?
- Why is entrainment/detrainment so much smaller in "single-cloud" runs than in LES ensembles?
 - Bubble vs plume?
- Still need to test causal hypothesis on single-cloud runs
 - Ideas are there, just lacking the time