

# **ARM Translator Products for WBLP**

**Shaocheng Xie** 

### Lawrence Livermore National Laboratory



This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. LLNL-PRES-841505

### Science Product Development Led by a Team of Scientists ARM

#### **ARM Translator Group**

Translators are liaisons between the scientific community and ARM infrastructure staff members, and develop Value-Added Products, or VAPs, from the direct output of ARM instruments or other VAPs.



Shaocheng Xie Warm Clouds POC EPCAPE POC



Aerosol POC

TRACER POC



Damao Zhang High-Latitude POC SAIL POC



Scott Collis Convective POC AWAKEN POC



Scott Giangrande Lead Translator COMBLE POC



Krista Gaustad Software Development



Ken Kehoe Data Quality



### **More on ARM Translators**



- Translators actively engage with the climate community to promote:
  - i. Improved accessibility
  - ii. Improved documentation and uncertainty estimates for ARM datasets
  - iii. New support for data visualization and analyses
  - iv. New modeling diagnostics or forward-instrument operator tools
  - v. New model-observational hybrid activities
- Translators prioritize efforts based on input from the communities including the ARM UEC, AMSG, CPMSG, Triennial Review, ASR WGs, ARM field campaign ST.
  - Provide more timely AMF VAP production and formalizing of AMF VAP request processes in conjunction with ARM infrastructure leads and active AMF campaign Pis
  - Support for new instrumentation and capabilities (e.g., AOS, scanning radar and lidar)
  - Data quality and uncertainty
  - Improvements to product communication and accessibility

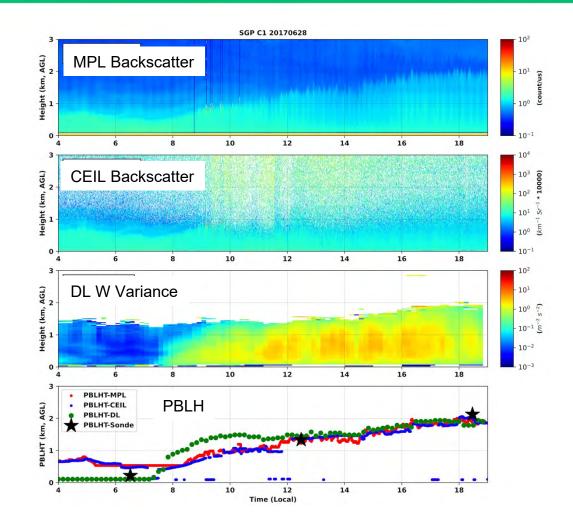
### **Core ARM Translator VAPs for AMFs**



#### WBLP WG Translator Point of Contact: Shaocheng Xie xie2@llnl.gov

The list includes aerosol & cloud properties, PBLH, Surface Fluxes, as well as the large-scale conditions.

The list could be revised according to feedback from the communities




| ARM VAP             | Translator / Contact | Expected Timetable                                 |
|---------------------|----------------------|----------------------------------------------------|
| AOP/AOD             | Shilling             | 1 week of data collection for AOP, ~1 year for AOD |
| AERIoe              | Zhang                | 6 months of end of campaign                        |
| ARMBE               | Xie                  | <1 month when required VAPs available              |
| AERINF              | Zhang                | 1 week of data collection                          |
| ARSCL               | Giangrande           | < 1 month of data collection                       |
| INTERPSONDE         | Giangrande           | < 1 month of data collection                       |
| MWRRET              | Zhang                | 1 week of data collection                          |
| MICROBASE_PLUS      | Giangrande           | Upon availability of MWRRET                        |
| PBL Height          | Zhang                | 1 week of data collection                          |
| MPLCLDMASK          | Zhang                | 1 week of data collection                          |
| DLPROF              | Zhang                | 1 week of data collection                          |
| QCRAD / RADFLUX     | Zhang                | 1 week of data collection                          |
| QCECOR              | Xie                  | 1 month of end of campaign                         |
| SPHOT COD           | Giangrande           | 6 months of end of campaign                        |
| LDQUANTS/VDISQUANTS | Giangrande           | <1 week of data collection                         |
| SACRGRID            | Giangrande           | <2 months of data collection                       |
| VARANAL             | Xie                  | 3-6 months of end of campaign                      |

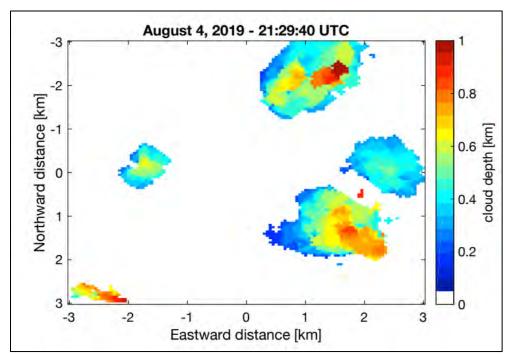
# Data Product Highlight: PBLHT from Lidar Measurements



| VAPs        | ARM sites                                                                     |
|-------------|-------------------------------------------------------------------------------|
| PBLHT-Sonde | SGP(2001-2021), ENA(2013-<br>2021), NSA(2002-2021),<br>AMF field campaigns    |
| PBLHT-MPL   | SGP (2014-2021), CACTI                                                        |
| PBLHT-CEIL  | SGP (2012-2021), ENA<br>(2013-2021), NSA (2013-<br>2021), AMF field campaigns |
| PBLHT-DL    | SGP (2010-2021)                                                               |
| PBLHT-RL    | Under development                                                             |



U.S. DEPARTMENT OF

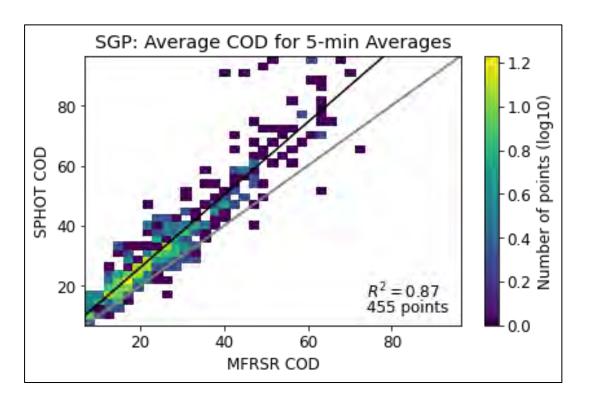

#### Translator Contact: Damao Zhang, damao.zhang@pnnl.gov

# **Clouds Optically Gridded by Stereo (COGS) VAP**



For more VAP information, please contact Rusem Oktem: roktem@lbl.gov

- COGS is generated from a ring of six stereo cameras at the SGP site.
- Available in the ARM archive as an evaluation product. The VAP is best-suited for shallow cumulus clouds.
- It provides a 4D map of cloudiness, which can be used to calculate cloud-base height, vertically projected cloud fraction estimates, cloud-top speeds, etc.
- The 4D map of cloudiness has:
  - 50 m resolution in space,
  - 20 sec resolution in time, and
  - Samples (6 km)<sup>3</sup> volume.

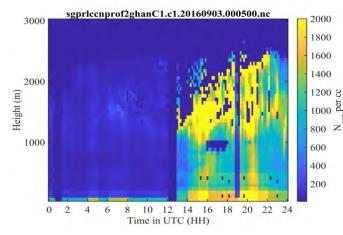



Stereo data also available for CACTI and TRACER

### **ARM Cimel Sunphotomter Cloud Mode VAP Product**

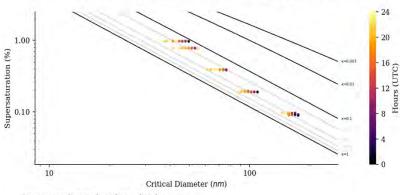


For more VAP information, please contact Lynn Ma: malynn@bnl.gov




- Microphysical Cloud Properties from ARM Cimel Sunphotometer
- New Cloud Optical Depth (COD), Cloud droplet effective radius (EFF), and Liquid Water Path (LWP) retrievals.
- Uncertainty quantification, and long-term ARM evaluation.
- Initial dataset release covering ARM SGP site can be downloaded now. Adding ENA, COMBLE, LASIC, and other sites soon.




# **Data Product Highlight: Aerosol VAPs**





Vertical CCN profiles at 0.4% supersaturation

sgpaosccnsmpskappaE13.c1.20170415.kappa vs critical diameter



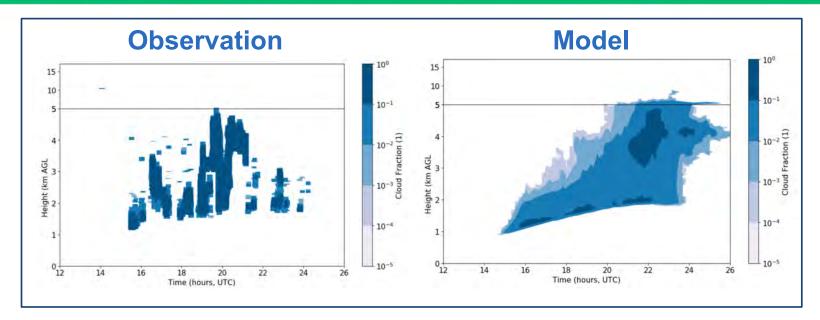
Kappa constant lines are drawn from analytical expression number 10 from Petters and Kreidenweis (2007).

U.S. DEPARTMENT OF

**CCNPROF:** estimates the vertical distribution of CCN as a function of supersaturation.

- Currently working on 2016 SGP data and comparing to in-situ G-1 measurements from HI-SCALE.
- Starting to derive f(RH) for ENA.

**CCN kappa VAP:** uses CCNC and SMPS measurements to parameterize hygroscopicity with the kappa parameter.


- Kappa data for April 2017 February 2021 at SGP are newly available.
- Will extend to other sites/deployments (ANX, ASI, COR, MOS) in coming FY.

#### Translator Contact: John Shilling, john.shilling@pnnl.gov

### **LASSO-O Bundles**



For more VAP information, please contact Bill Gustafson: william.gustafson@phnl.gov

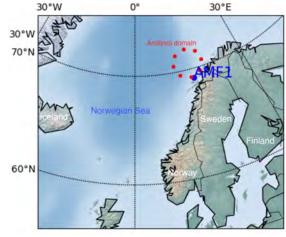


- The initial Large-Eddy Simulation (LES) ARM Symbiotic Simulation and Observation (LASSO) projects enables users to compare models with ARM observations collected at the SGP site during shallow cumulus events.
- Bundles consist of LES outputs for each event (95 shallow cumulus events observed from 2015-2019 over the SGP site), and the items needed to reproduce the LES results.
- Observations from those shallow cumulus events, and skill scores / diagnostic details identifying how the LES behaved.



### Large-scale Forcing (VARANAL)

LLNL: Cheng Tao Shaocheng Xie




#### COMBLE

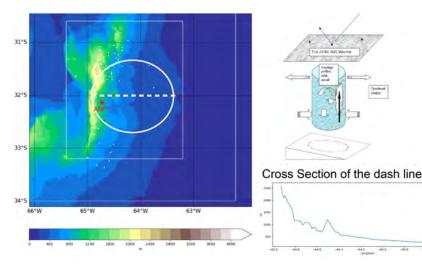
**Objective:** To quantify the properties of boundary layer convection and air-mass transformations in cold-air outbreaks (CAO) over open water in the Arctic.

#### VARANAL settings for COMBLE:

- •Location: centered at 14.9°E, 70.6°N
- •Time: Dec. 2019 May 2020
- •Domain size: 150 km in radius
- •Resolution: hourly, 25 mb



\*The variational analysis domain is enclosed by the red circle. The AMF1 is located at the edge of the domain.


Available in the ARM Archive.

#### CACTI

**Objective:** To improve understanding of cloud life cycle and organization in relation to environments.

#### **VARANAL** settings for CACTI:

- •Location: centered at 64.1°W, 32°S
- Time: Oct. 2018 Apr. 2019
- Domain size: 75 km in radius
- •Resolution: hourly, 25 mb



\*The VARANAL for CACTI is derived in both pressure and sigma coordinate.

Data completed.

Will be available in the ARM Archive soon.



#### Contact: Cheng Tao, LLNL, tao4@llnl.gov



# **Questions?**

#### Let's know your data needs and we are here to support!

Translator POC for WBLP: Shaocheng Xie (LLNL), xie2@llnl.gov



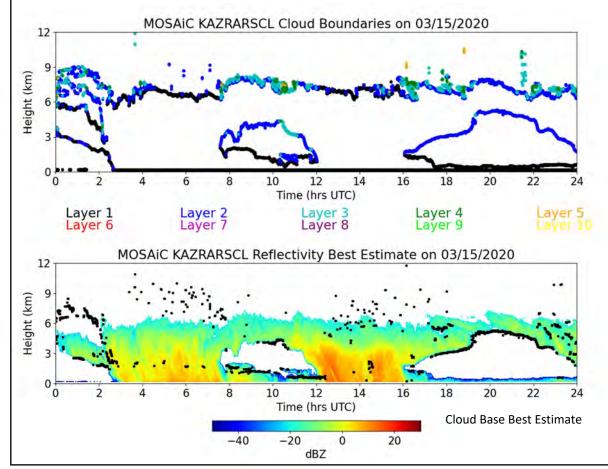
#### **Continuous Baseline Microphysical Retrieval** (MICROBASE) VAP For more VAP information, please contact Meng Wang: mwang@bnl.gov



liquid water content sapmicrobaseC1.c1.20211121.000000.nd 0.08 0.06 height (km) 0.04 5 0.02 liquid\_effective\_radius sgpmicrobaseC1.c1.20211121.000000.nc 20 neight (km) 2 20 ice water content sgpmicrobaseC1.c1.20211121.000000.nc 0.150 0.125 0.100 0.075 E height ( 0.050 0.025 0000 ice effective radius sgpmicrobaseC1.c1.20211121.000000.nc 20 35 30 neight (km) 25 5 20 5 10 15 20

MICROBASE is available again at SGP, ENA, PVC, ASI, ٠ GAN, and other ARM sites in the ARM Archive.

- This VAP provides "baseline" retrievals for: ٠
  - Liquid Water Content (LWC),
  - Ice Water Content (IWC),
  - Effective Size (De).
- The updated VAP includes additional uncertainty quantification, with additional validation/closure efforts planned for FY23.

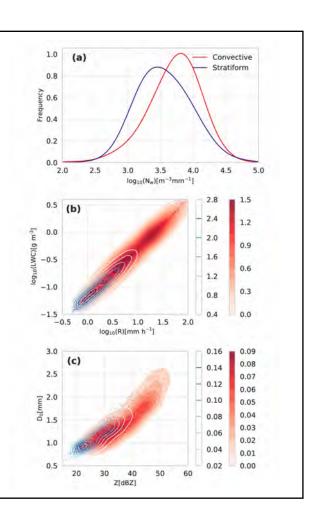



## **Active Remote Sensing of Clouds (ARSCL) VAP**



For more VAP information, please contact Karen Johnson: kjohnson@bnl.gov

- ARSCL is available now at the ARM Archive for multiple fixed sites and AMF campaigns. These include the recent TRACER, SAIL, and MOSAiC.
- The VAP applies a cloud mask, gaseous attenuation correction, and mean Doppler velocity corrections.
- The VAP is available first in uncalibrated '.c0' and calibrated '.c1' versions, however both are useful for cloud boundaries, layers and other properties.
- Data are available within 1–month of data collection for all current collection, and available for the entire KAZR record.




## LASER / VIDEO DISDROMETER VAPs



For more VAP information, please contact Aifang Zhou: azhou@bnl.gov

- LDQUANTS/VDISQUANTS data is available now at the ARM Archive (Baseline product).
- The VAP estimates rainfall rates and several geophysical quantities, parameterized DSD fits (gamma or exponential assumption type methods) following ARM long-term efforts.
- Radar-equivalent quantities, including dual-polarization radar quantities (e.g., Reflectivity Factor Z, Differential Reflectivity ZDR) are also calculated.
- Available daily at all fixed ARM sites under rainy conditions, as well as AMFs such as TRACER, CACTI, GoAmazon, and SAIL.



