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Motivation

• Inject salt-water plumes at the ocean surface
‒ Droplets evaporate to leave sea salt aerosol
‒ Turbulent mixing lofts the aerosol to cloud base
‒ Increase cloud albedo and longevity

• Limited opportunities for controlled field experiments 
‒ Numerical Experiments

• PINACLES: Predicting INteractions of Aerosol and
Clouds in Large Eddy Simulation

• Similar simulations of stratocumulus cloud test case 
for sensitivity studies

• 3 plumes injected a few km apart just above 
the surface with identical properties 

Numerical and Physical Sensitivities in Large Eddy Simulations of Plume Lofting and Spread

Image credits: Peter Blossey

“Ship tracks” are 
brightened cloud 
areas that result 
from aerosol 
particles in ship 
exhaust. They 
are an 
inadvertent 
example of the 
same cloud 
responses MCB 
seeks to use.
Credit: NASA
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• P3 vs Morrison1,2 microphysics schemes

z = 100 m

Plume width calculated from simulations in PINACLES using 
P3 (red) and Morrison (black) microphysics schemes 

Results – Microphysics schemes

z = 400 m

z = 100 m

x

y

Numerical and Physical Sensitivities in Large Eddy Simulations of Plume Lofting and Spread

1 Morrison et al., Journal of the Atmospheric Sciences (2005)
2 Wyant et al., Journal of Advances in Modeling Earth Systems (2022)

Plume tracer contours from simulation using Morrison (black) microphysics 
scheme, z = 100 m
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Results – Microphysics schemes

Cloud water mixing ratio Cloud number concentration

Mean vertical profiles and time evolution calculated from simulations using P3 (red) and Morrison (black) microphysics schemes

P3 (red) Morrison (black)

Liquid Water Path

Numerical and Physical Sensitivities in Large Eddy Simulations of Plume Lofting and Spread
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• Passive vs active plumes
• Little difference in plume lofting, 

with our current resolution
• Aerosol in the plumes result in 

much smaller cloud droplets
• Aerosol in the plumes lower 

liquid water path

Plume width calculated from simulations in 
PINACLES using passive (black) and active 
(blue) plumes

Results – Passive and active plumes

Cloud water mixing ratio Cloud number concentration

Mean vertical profiles and time evolution calculated from simulations using passive (black) and active (blue) plumes

Liquid Water Path

Numerical and Physical Sensitivities in Large Eddy Simulations of Plume Lofting and Spread
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• Sea salt plumes introduced at the ocean surface spread and loft to the clouds
• Microphysics schemes have significant impact on the clouds and plume spread
• Active plumes modify cloud coverage, but have little effect on plume spread
• Different scalar and momentum advection schemes also result in differences of the

same order

Future Work
• Simulations with higher grid resolution
• Simulations of different types of stratocumulus cloud setups

More info: Poster session 3, number 45

Conclusions

Numerical and Physical Sensitivities in Large Eddy Simulations of Plume Lofting and Spread
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Impact of subgrid-scale variability on grid-mean process rates

For a bivariate lognormal distribution P(qc,Nc), E can be written as 

(1) Contribution to E from variability of cloud water mixing ratio (qc)
(2) Contribution to E from variability of cloud droplet concentration (Nc)
(3) Contribution to E from the covariance between qc and Nc

• Neglect of SGS variability can produce biases in microphysical process rates
• Some ESMs account for via a simple “enhancement factor” multiplier E

• Here we present results from large-eddy simulation (LES) with bin microphysics to 
analyze the impact of the co-variation of cloud water qc and cloud droplet 
concentration Nc on SGS variability and enhancement factor E



Impact of subgrid-scale variability on grid-mean process rates

Correlation between 
qc and Nc



Contributions to E from variability in qc , Nc , and COV(qc , Nc ) 

Single moment E (qc only)

Correlation between 
qc and Nc

Eq EN

ECOV E

Conclusions
• Both bulk and bin 

simulations suggest that E 
should be lower than the 
3.2 value commonly used

• Covariance between qc
and Nc responsible for the 
reduction in E

• Large correlation between 
qc and Nc near cloud top 
suggests inhomogeneous 
mixing 
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the Eastern North Atlantic



Aerosol and Cloud Experiment in Eastern North Atlantic (ACE-ENA)

Wang et al., 2022, BAMS
2

Azores

ENA site: Particle number size 
distribution, CN, NCCN, particle 
hygroscopicity (κCCN)
Aircraft measurements: aerosol 
properties and cloud microphysics



Hoppel Minimum and Maximum Supersaturation
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N>HM: particle number 
concentration in the size larger 
than HM

Nc: cloud droplet number 
concentration

Nc in cloud N>HM below cloud≈



Maximum Supersaturation in the Clouds 
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SCCN measured 
particle activation 

spectrum

Hoppel
Minimum

SSmax,SCCN+

Clear seasonal 
variations with high 

values in winter



Dependence on CCN Concentration and Meteorological Parameters

Suppression 
of SSmax

by increased 
condensation 
sink of water 
vapor at high 

NCCN.

Stronger 
convection as 

cold air advects
over warm ocean 

following the 
passage of fronts

The strong updrafts are associated 
with strong radiative cooling on 
cloud top, and stronger latent heat 
release, which scales with the cloud 
thickness. Thicker clouds are often 
formed in deeper MBL. Lower static 
stability allows for deeper MBL, as 
does reduced subsidence.

MLR
R2=0.57

5

Inversion layer height (m) Lower tropospheric stability (K) Inversion strength (K)



Summary
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 Hoppel Minimum in the marine boundary layer is the result of processing by non-

precipitation clouds.

 SSmax in the cloud is derived from Hoppel Minimum and aerosol activation measurements 

at the ENA site.

 SSmax over the Eastern North Atlantic shows a clear seasonal variation.

 SSmax variation is related to CCN number concentration, pressure, lower tropospheric 

stability, and inversion layer height.
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Scientific Objectives
• Better detect and understand the liquid-phase cloud response to aerosol 

perturbations in observations through constraining large-scale meteorological factors 
• Reduce the related uncertainty in the DOE Energy Exascale Earth System Model with 

an emphasis on the process-level understanding

We started this project with the marine boundary layer clouds over the ENA region



Constrain meteorological controlling factors
• Multiple meteorological variables clustering

• Daily U, V, T, Q, Relative humidity profiles (7 pressure levels for now)
• ECMWF analysis for the ARM ENA site: 2015-2020 JJA. 276 no-deep-

convection days in total 
• Unsupervised clustering algorithms (MiniBatchKMeans, DBSCAN, Spectral 

Clustering) 

• Analyze ARM observed cloud and surface CCN for each cluster
• Daily LWP and surface CCN (SS0.2%): 2016-2019 JJA, 111 days from 

ARM Best Estimate Data Products (ARMBE)

• Advantages and challenges
• The approach is applicable to model analyses
• Limited observed variables and data samples 

• Future work
• Optimize the clustering process 
• Expand the sample size through including different ARM sites 
• Case study based on the clustering result

Calendar of clusters

Relative humidity in three clusters as an example

ENA Obs CCNsurf SS0.2% vs. LWP



Cloud susceptibilities over the ENA region from Meteosat retrievals 

Shaoyue Qiu
LLNL

Shaoyue Qiu’s
virtual poster for 
more informationMeteorological conditions are

better constrained in the 
instantaneous spatial 
correlation within each 1ox1o

grid

LWP-Nd climatology

Daytime half-hourly data during July 
2018-2021: ~ 8x104 samples for the region 
(33-43°N, 23-33°W) 

Cloud LWP susceptibility

Cloud LWP

Diurnal variability

Different cloud regimes including broken clouds

LWP Albedo CF
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Warm rain in marine low clouds (MLC)
● Warm rain is generated by the collision coalescence 

process and prevalent in MLC
● Warm rain is important for

○ Water budget in MLC (important sink of water)
○ Lifetime of MLC
○ Radiative effects of MLC
○ Aerosol-cloud interactions (lifetime effects)

● Measurements of warm rain
○ Intensity/precipitation rate 
○ Fraction/probability (e.g., PoP) Zhang et al. 2021

Precipitation rate is difficult to quantify 
from remote sensing observations

Many previous studies used the PoP to 
study warm rain. ( Lebsock et al. (2008) and 
L’Ecuyer et al. (2009) Wang et al. 2012; Mann et al. 
2014; Song et al. 2018, Mülmenstädt et al. 2020)

Ground-based w-band radar reflectivity



PoP is important and useful

Wang et al. 2012

Song et al. 2018

OBS

CAM5



Motivation and Objectives
● Derive the warm rain probability (i.e., PoP) from the observation 

(MODIS+CloudSat) 
● Investigate the dependence on PoP on cloud properties

○ Cloud liquid water path (LWP)
○ Cloud Droplet Number Concentration (CDNC)

● Understand the spatial-temporal variability of PoP 
○ Transition of PoP from stratocumulus to cumulus cloud regimes
○ Seasonal variation of PoP in stratocumulus cloud regions

𝑃𝑜𝑃 =$𝑃𝑜𝑃 𝐿𝑊𝑃, 𝐶𝐷𝑁𝐶 𝑃𝐷𝐹 𝐿𝑊𝑃, 𝐶𝐷𝑁𝐶 𝑑𝐿𝑊𝑃𝑑𝐶𝐷𝑁𝐶

Key Hypothesis

Grid mean PoP
Universal
microphysical control

PDF 
of cloud properties



Data and Methodology 
● MODIS-CloudSat collocated product

○ Identify MLC from MODIS and CloudSat data
■ “Cloudy” and “Liquid-phase” based on MODIS observation
■ Cloud top < 3km based on CloudSat/CALIOP 

○ Identify precipitation from CloudSat data
■ Maximum radar reflectivity in the column dBZ_max > -15 

● Definition of PoP
○ PoP = Number of precipitation MLC clouds / Number MLC clouds in an area (grid, region) 

and over certain period (monthly, seasonal, annual)



Properties of MLC in Tropics

Total CF

Low CF



Properties of MLC in Tropics
PoP

LWP

CDNC

PoP = Number of precipitation 
MLC clouds / Number MLC 
clouds

LWP: integrated total water in 
clouds

CDNC: Number of droplet in 
clouds



Properties of MLC in Tropics
PoP

LWP

CDNC

Large LWP + small CDNC -> large PoP

small LWP + large CDNC -> small PoP



Parameterization of PoP
Logistic function

𝑐! = −6.9, c" = 5.7, c# = −3.2

𝑃𝑜𝑃 =$𝑃𝑜𝑃 𝐿𝑊𝑃, 𝐶𝐷𝑁𝐶 𝑃𝐷𝐹 𝐿𝑊𝑃, 𝐶𝐷𝑁𝐶 𝑑𝐿𝑊𝑃𝑑𝐶𝐷𝑁𝐶



Parameterization of PoP
PoP based on observation

PoP based on parameterization

Error between parameterization and observation

ü Universal microphysical control

𝑃𝑜𝑃 =$𝑃𝑜𝑃 𝐿𝑊𝑃, 𝐶𝐷𝑁𝐶 𝑃𝐷𝐹 𝐿𝑊𝑃, 𝐶𝐷𝑁𝐶 𝑑𝐿𝑊𝑃𝑑𝐶𝐷𝑁𝐶



Understanding the St to Cu transition of PoP

SEP

What is the main reason 
for the increase of PoP 
from Sc to Cu?



What is the main reason for the PoP transition?
● PoP increases from Sc to Cu region
● LWP increases slightly and CDNC decreases significantly

To understand the relative role of LWP 
and CDNC, we did the following test

We derived the following two sets of 
<PoP>

● LWP fixed PDF(<LWP>, CDNC)
● CDNC fixed PDF(LWP, <CDNC>)

The idea is to keep one factor fixed and 
allow the other to vary from Sc to Cu

𝑃𝑜𝑃 =$𝑃𝑜𝑃 𝐿𝑊𝑃, 𝐶𝐷𝑁𝐶 𝑃𝐷𝐹 𝐿𝑊𝑃, 𝐶𝐷𝑁𝐶 𝑑𝐿𝑊𝑃𝑑𝐶𝐷𝑁𝐶



Understanding the St to Cu transition of PoP

LWP fixed PDF(<LWP>, CDNC) CDNC fixed PDF(LWP, <CDNC>)

Decreases of CDNC dominates



Understanding the Seasonal variation of PoP

LWP fixed PDF(<LWP>, CDNC) CDNC fixed PDF(LWP, <CDNC>)

Seasonal variation of LWP dominates



Summary
● PoP of MLC over tropical oceans is derived from the collocated MODIS and 

CloudSat products 
● A logistic function based parameterization scheme is developed to quantify 

the dependence of PoP on LWP and CDNC
● The parameterization can be used to understand the the spatial-temporal 

variation of PoP
○ Sc to Cu transition is mainly caused by the decrease of CDNC.
○ The seasonal variation of PoP is mainly caused by the seasonality of LWP. 



Outlook 
● The PoP parameterization scheme can be used to evaluate the warm rain 

simulations on the GCMs
○ The PoP(LWP, CDNC) (color) can be used to evaluate the warm rain scheme
○ The PDF(LWP, CDNC) (line) can be used to evaluate the cloud scheme
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Bulk parameterization of microphysics remains challenging: 

• Significant advances have been made in detailed process modeling (e.g. Lagrangian 
microphysics) but there is uncertainty in how this can be used to develop simplified/
reduced order approaches for bulk schemes. 

• Fundamental uncertainty owing to significant knowledge gaps in cloud physics, 
especially for the ice-phase (relevant to all schemes including Lagrangian and bin). 

• Laboratory studies are essential to gain process-level microphysics knowledge, but 
there is uncertainty in how to incorporate such data into schemes (limited sampling 
conditions, questions of how results scale to real clouds, etc). 

• Wealth of natural cloud and precipitation observations but difficult to measure process 
rates directly, only net effects on hydrometeors —>  an indirect constraint of bulk 
schemes 



Overview of the warm rain microphysics problem
The BIG question: How to use these various data sources — each with their own 
uncertainties — to constrain bulk schemes? 


• As more complex bulk schemes are developed this makes indirect constraint (i.e., 
tuning) even more difficult... 


• Simply stated: we want to incorporate uncertain “observations” (or process model 
data) in a parameterization with basic cloud physics knowledge in a rigorous way. 


• This is a Bayesian problem, and we can therefore use Bayesian statistics to 
address it rigorously... Thomas Bayes (1701-1761) 

P (x|y) = P (y|x)P (x)

P (y)
<latexit sha1_base64="44By0TIr2S5/zt4TrKa4wewu7Ig=">AAACQHicbVBLS8NAGNz4rPUV9ehlsQjtpSRV0ItQ9OKxgn1AU8pmu2mXbh7sbqQh5qd58Sd48+zFgyJePblpI305sDDMzMf37dgBo0Iaxqu2srq2vrGZ28pv7+zu7esHhw3hhxyTOvaZz1s2EoRRj9QllYy0Ak6QazPStIc3qd98IFxQ37uXUUA6Lup71KEYSSV19WataLlIDmwnHiWPfzRKSvAKWg5HOJ4GomlgpAKzk6VkLldKunrBKBtjwGViZqQAMtS6+ovV83HoEk9ihoRom0YgOzHikmJGkrwVChIgPER90lbUQy4RnXhcQAJPldKDjs/V8yQcq7MTMXKFiFxbJdMbxaKXiv957VA6l52YekEoiYcni5yQQenDtE3Yo5xgySJFEOZU3QrxAKnapOo8r0owF7+8TBqVsnlWrtydF6rXWR05cAxOQBGY4AJUwS2ogTrA4Am8gQ/wqT1r79qX9j2JrmjZzBGYg/bzC4lhsY0=</latexit>
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FIG. 8. As in Fig. 6, but for process rates output from each respective simulation.
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FIG. 6. Profiles of prognostic moments (M0, M3) and rain rate histograms, for 10 cases with 1000 BOSS

forward simulations using parameter values sampled from the M0-M3-B PDF, the M0-M3-B MAP parameter

values (blue), and MORR (red). Specified upper boundary conditions sampled for each case are shown by text

in the rain rate histogram plots.
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FIG. 7. As in Fig. 6, but for M0, M3, and M6 using the 3-moment M0-M3-M6-B.
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FIG. 6. Profiles of prognostic moments (M0, M3) and rain rate histograms, for 10 cases with 1000 BOSS

forward simulations using parameter values sampled from the M0-M3-B PDF, the M0-M3-B MAP parameter

values (blue), and MORR (red). Specified upper boundary conditions sampled for each case are shown by text

in the rain rate histogram plots.
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FIG. 7. As in Fig. 6, but for M0, M3, and M6 using the 3-moment M0-M3-M6-B.
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FIG. 6. Profiles of prognostic moments (M0, M3) and rain rate histograms, for 10 cases with 1000 BOSS

forward simulations using parameter values sampled from the M0-M3-B PDF, the M0-M3-B MAP parameter

values (blue), and MORR (red). Specified upper boundary conditions sampled for each case are shown by text

in the rain rate histogram plots.
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FIG. 6. Profiles of prognostic moments (M0, M3) and rain rate histograms, for 10 cases with 1000 BOSS

forward simulations using parameter values sampled from the M0-M3-B PDF, the M0-M3-B MAP parameter

values (blue), and MORR (red). Specified upper boundary conditions sampled for each case are shown by text

in the rain rate histogram plots.
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We can match performance of a traditional microphysics scheme, plus we have uncertainty estimates!

Morrison et al. JAS 2020; van Lier-Walqui et al. JAS 2020, Morrison et al. JAMES 2020, Reimel et al. (in prep)
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The BOSS approach
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Get rid of fixed process rate functions
Use a flexible (but sensible) functional basis set

Use Bayesian inference to estimate a,β,𝛿
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stuff

Example of theoretical constraints on parsimony

A third moment (e.g. M6) can be used as a measure of DSD

variance:

�2 =
1

Mc0

Z 1

0
N(D)(D3 �mc)

2dD =
Mc6

Mc0
�m2

c

Constraint on the possible values of DSD variance enforces a

structural form on the process rate for cloud self-collection

(. . . some math. . . )

b6m,csc = b0m,csc + 2 a6,csc � a0,csc (1)

Similar arguments reduce the total number of BOSS

parameters from 60+ to 37 for 3-moment cloud BOSS

Marcus van Lier-Walqui PSU Colloquium
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Directly fitting process rates to a Bin model
manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 1. Histogram showing probability density of “true” (bin model) and fitted process

rates for M3 autoconversion rate when using the formulae from (a) 2M-NR1T, (b) 2M-NR2T, (c)

2M-RD, (d) 3M-NR1T, (e) 3M-NR2T, and (f) 3M-RD. Colorbar values are log10 of the fraction

of data points falling within the given bin in the histogram. The line where rtrue = rfit is plotted

in red.
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Testing direct fits in time-evolving 1D model

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 3. Time series of column-integrated autoconversion mass rate for the bin model and

BOSS schemes. Left: The first half-period of the precipitating case in Figure 2. Right: The first

half of the last period of the same case.

evaporates gradually between 300 s and 600 s, and some of the in-cloud rain evaporates435

with it. 2M-RD evaporates too much of this rain, likely because the late onset of auto-436

conversion means that the rain drops are too small (not allowing time for significant ac-437

cretion to occur) and the cloud drops too large to accurately partition evaporation be-438

tween the two. Relatively large error in the number evaporation formulae may also play439

a role.440

Figure 2 shows that the timing and magnitude of the first rain rate peak is almost441

the same in 2M-RD as in the bin model, even though 2M-RD produces less rain and pro-442

duces it later. This is likely due to the excessive size sorting that commonly occurs in443

2-moment sedimentation schemes, in which the leading edge of the rain mass falls faster444

than the rain number, so that the mass is increasingly associated with large particles that445

fall out quickly and undergo little evaporation (for instance, see Milbrandt and McTaggart-446

Cowan (2010) and Wacker and Seifert (2001)). Supporting this idea, Figure 4 shows that447

2M-RD has large fall speeds and almost no evaporation in the lowest model layers. Since448

3M-RD also uses only two moments for rain, it is subject to similar biases.449

To briefly summarize, we have identified four main sources of error in the results450

using BOSS with parameters from direct process fits:451

1. Most autoconversion occurs too late, and it is concentrated in too small of a re-452

gion spatially.453

2. Too much rain evaporates within the cloud (which may be due in part to the au-454

toconversion bias).455

3. Excessive size sorting causes rain mass to fall too quickly, so that too much rain456

reaches the surface.457

4. The single-term, non-rain-dependent autoconversion has even more significant prob-458

lems with timing, causing large errors in the ratio of accretion rate to autocon-459

version rate. 2M-NR1T begins autoconversion too early and increases it too grad-460

ually, while 3M-NR1T begins autoconversion much too late.461

The third item mentioned above is unsurprising for schemes that use two moments462

with single-term power law formulae to calculate the rain fall speeds, leading to exces-463

sive size sorting. The low accuracy of the predicted autoconversion rates, even using rain-464

dependent terms, is more surprising. Overall, these BOSS schemes could be argued to465

be reasonable bulk microphysics schemes (perhaps with the exception of 3M-NR1T), but466

–14–

Looking at autoconversion rates tuned via direct 
fitting in 1D model simulations
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Testing direct fits in 1D model (2M vs 3M)
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Figure 4. Comparison of rain mass and rain mass process rates between bin scheme, 2M-RD, and 3M-RD, shown over space and time for one forcing period.

Columns from left to right show bin model values, 2M-RD values, 3M-RD values, the di↵erence between 2M-RD and bin, and the di↵erence between 3M-RD and

bin. Rows from top to bottom show rain mass mixing ratio, autoconversion rate, accretion rate, rain evaporation rate, and rain fall speed.
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Instead use direct fits as a (Bayesian) prior

Autoconversion rates in 1D model

Early oscillation Later oscillation

*Refine the prior with a likelihood using observations from time-evolving sim’n

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 7. Same as Figure 3, except for schemes tuned in the time-evolving context with the

1D driver.

uni. The 3M-RD-TE scheme (and to a lesser extent 3M-NR2T-TE) models the autocon-595

version in a way that makes the system highly sti↵, briefly producing spurious numer-596

ical oscillations even at a 5 s time step. However, these oscillations disappear if a 1 s time597

step is used (grey line), and this scheme is still the most accurate emulator of the bin598

model.599

The 3M-NR1T-TE scheme produces an odd shape with two distinct modes in time,600

despite the relative simplicity of its treatment of autoconversion. This is due in part to601

an excessive evaporation of cloud number for this scheme — shown in Figure ??(b) —602

which increases the mean cloud drop size and hence autoconversion rate. Perhaps it should603

not be surprising that 3M-NR1T-TE uses an unusual tuning of other processes to a↵ect604

its autoconversion rate, given that the number of parameters is much higher than for 2M-605

NR1T-TE (37 versus 25), but the autoconversion formula still is not flexible enough to606

directly match the bin model process rates very well, as seen in Figure 1(d). As a result,607

the most e↵ective way for 3M-NR1T-TE to reduce error in the observed rain moments608

is by tuning other processes in a way that indirectly improves the autoconversion rate.609

A notable di↵erence between the TE schemes and those using the single-process610

fits is that using rain information in the autoconversion rate is much less beneficial in611

the time-evolving context. Figure ??(a) shows that 2M-RD-TE does not produce a clearly612

better autoconversion rate than 2M-NR2T-TE, which has a peak autoconversion rate613

closer in time and amplitude to the bin model’s peak. The accretion-autoconversion ra-614

tio for is 2.68 for 2M-RD-TE and 4.41 for 2M-NR2T-TE, as opposed to 3.57 for the bin615

model, meaning that the two schemes have similar biases on this measure (albeit of dif-616

ferent size). Meanwhile, 3M-RD and 3M-NR2T-TE have nearly identical rain moments617

and rain-related process rates, and similar (but somewhat inaccurate) accretion-autoconversion618

ratio (2.61 and 2.71, respectively). These schemes di↵er mainly in the cloud number evap-619

oration and cloud self-collection (not shown). Table 4 shows that the TE schemes rely620

less on rain information to determine the autoconversion rate, since the rain-dependent621

term is always responsible for less of the total autoconversion when using the time-evolving622

tuning method. We can also see in Table 4 that the exponents brm and bn tend to be623

roughly constant or decrease in the TE schemes compared to the direct process fit schemes,624

while bcm and bK increase, suggesting that the rain-dependent term itself has a stronger625

dependence on the cloud properties and a weaker dependence on rain properties for the626

TE schemes.627

Besides the biases in autoconversion, as discussed in section 3.2, the direct single-628

process fits tended to produce too much rain evaporation relative to the amount of rain,629
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Figure 8. Same as 4, except that 2M-RD-TE and 3M-RD-TE are compared to the bin model.
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Structural choices must be evaluated in the 
context of adequate parameter constraint!



A larger structural error? 

Are separate cloud and rain categories the correct 

approach for bulk warm microphysics?
Adele L. Igel, H. Morrison, S. P. Santos, and M. van 
Lier-Walqui. Limitations of separate cloud and rain 
categories in parameterizing collision- coalescence for 
bulk microphysics schemes. JAMES, 2022. 


(See also Kogan & Belochitski JAS, 2012.)
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This is something we are currently testing with BOSS!

Bin model ->

BOSS single-

category 4M—>
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A spectrum of data and ways to constrain/inform BOSS

Directly fitting process 
rates to some “reference” 

scheme

Empirical Fitting of Bulk Schemes

Figure 1: Regression used to produce
the KK autoconversion formula, excerpted
from Khairoutdinov and Kogan (2000)[2]
(https://doi.org/10.1175/
1520-0493(2000)128<0229:

ANCPPI>2.0.CO;2).

I Process rates in bulk microphysics schemes are
subject to some theoretical constraints (e.g.
conservation of mass), but most cannot be derived
from “first principles”.

I Typically we choose a functional form for a process
rate, and fit it to data using (non)linear regression.

I This data is usually taken from simulations with bin
schemes; i.e. the bulk scheme is formulated as a
reduced-order approximation to some bin model.

I However, process rate formulas are o�enmodified or
“retuned” in the context of a “host” weather or
climate model to improve agreement of that larger
model with observations. 3
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Figure 4. Comparison of rain mass and rain mass process rates between bin scheme, 2M-RD, and 3M-RD, shown over space and time for one forcing period.

Columns from left to right show bin model values, 2M-RD values, 3M-RD values, the di↵erence between 2M-RD and bin, and the di↵erence between 3M-RD and

bin. Rows from top to bottom show rain mass mixing ratio, autoconversion rate, accretion rate, rain evaporation rate, and rain fall speed.
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Figure 4. Comparison of rain mass and rain mass process rates between bin scheme, 2M-RD, and 3M-RD, shown over space and time for one forcing period.

Columns from left to right show bin model values, 2M-RD values, 3M-RD values, the di↵erence between 2M-RD and bin, and the di↵erence between 3M-RD and

bin. Rows from top to bottom show rain mass mixing ratio, autoconversion rate, accretion rate, rain evaporation rate, and rain fall speed.
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Bridging The Divide Between Bin And Bulk Microphysics
What prognostic variables are best for simulating warm rain with bulk microphysics schemes?
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3
National Center for Atmospheric Research

4
University of California, Davis

The BOSS Framework: Microphysics With No Assumed Drop Size Distribution

BOSS: The Bayesian Observationally constrained Statistical-physical Scheme

Figure 1:Rain-related quantities from kinematic driver using TAU bin
scheme and BOSS schemes using two (2M-RD-TE) or three (3M-RD-
TE) cloud moments. Rightmost two columns show deviation from the
reference for two and three moment schemes, respectively.
• Microphysics process rates from the TAU bin model are fit

using simple power laws in a 1-D kinematic driver.

Figure 2:Autoconversion rates. Black=bin model,
Red=power law, Yellow=sum of two power law
terms, Blue=two terms with rain moments.

• BOSS schemes
with three
cloud moments
perform much
better than
those with two
cloud moments
(Fig. 1).

• Although
rain moments
are useful for
diagnosing the
autoconversion
rate “o�ine”,
they do not benefit the model in a time-evolving context
(Fig. 2).

• We are developing a “single category” version of BOSS
with no artificial rain/cloud distinction.

JEFE: Measuring Predictability

JEFE: Jacobian Evaluation of Functional Error

Figure 3:Adjoint-model-derived estimates of relative error of highly-
accurate bulk schemes for cloud mass (left) and radar reflectivity (right).

Conclusions

• Two-moment schemes with separate rain and cloud categories
are generally unable to emulate bin model precipitation.

• Box model studies (AMP and JEFE) show that four-moment
single-category schemes are more accurate. We are working
on corroborating this with BOSS.

• All studies agree that using three or more cloud moments
substantially improves two-category autoconversion rates for
scheme.

• Lowering the threshold size separating cloud from rain may
also help base on AMP results.

AMP: A Bulk Scheme With Bin Physics

AMP: An Arbitrary Moment Predictor

Figure 4:Comparison of cloud
mass between bin and AMP
schemes for di�erent box
model simulations. Di�erent
colors=di�erent error terciles.

• The Hebrew University bin model
was used to produce a bulk
reconstruct-evolve-average
collision-coalescence scheme.

• Using separate rain and cloud
categories, defined by a 40 micron
size cuto�, (schemes c03-r03 and
c038-r038 in Fig. 4) is less
accurate than using moments of
the full hydrometeor size
spectrum (scheme f0349).

• Two-category schemes perform
much better with a 25 micron
cuto�, though the two-moment
scheme struggles with rain
reflectivity (not shown).

• More details in Igel et al., 2022.
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Some aspects of the atmosphere behave chaotically: errors

grow nonlinearly from small perturbations, reducing predictability

How to learn physics when simulation error may 

be dominated by initial condition error?
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Model error may be easier to tackle in 

climate simulations:

Sanderson & Knutti (2012)

Figure 1: Partitioning of model simulation errors for different intercomparison projects
(Lehner et al., 2020). Note the dominant model errors at 10- to 40-year time scale.

This simulation scope tightly connects to the definition of metrics and the development of
“improved” metrics as target to the CESM. LEAP will first leverage existing evaluation
packages such as the ESMValTool or iLAMB (for the land component), but will also go
beyond those traditional metrics. The new “LEAP” metrics will focus on climate projections,
especially targeted towards adaptation. For instance, mean precipitation might be a useful
model target, but many stakeholders are concerned with the prediction of extremes in
precipitation (and climate variability, see next related question), which might be even more
important as they drive flooding events and hazards. In parallel, many of the hardest physical
processes we want to emulate occur at fast timescales (e.g. convective organization, ocean
and atmosphere turbulence, microphysics) where issues with the parameterizations, and
especially its coupled biases, can be exposed even in short multi-day simulations (as
demonstrated in numerical weather forecasting systems). Our focus on these processes
provides opportunities to correct model errors even on shorter time scales and will naturally
lead to shorter-term metrics constrained by observations that will also impact long-term
metrics (e.g., atmospheric boundary layer temperature biases).

2

Lehner et al. (2020)
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microphysics) but there is uncertainty in how this can be used to develop simplified/
reduced order approaches for bulk schemes. 

• Fundamental uncertainty owing to significant knowledge gaps in cloud physics, 
especially for the ice-phase (relevant to all schemes including Lagrangian and bin). 

• Laboratory studies are essential to gain process-level microphysics knowledge, but 
there is uncertainty in how to incorporate such data into schemes (limited sampling 
conditions, questions of how results scale to real clouds, etc). 

• Wealth of natural cloud and precipitation observations but difficult to measure process 
rates directly, only net effects on hydrometeors —>  an indirect constraint of bulk 
schemes 
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The BIG question: How to use these various data sources — each with their own 
uncertainties — to constrain bulk schemes? 

• As more complex bulk schemes are developed this makes indirect constraint (i.e., 
tuning) even more difficult... 

• Simply stated: we want to incorporate uncertain “observations” (or process model 
data) in a parameterization with basic cloud physics knowledge in a rigorous way. 

• This is a Bayesian problem, and we can therefore use Bayesian statistics to 
address it rigorously... Thomas Bayes (1701-1761) 

P (x|y) = P (y|x)P (x)

P (y)
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Morrison et al. JAS 2020; van Lier-Walqui et al. JAS 2020, Morrison et al. JAMES 2020, Reimel et al. (in prep)
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Get rid of fixed process rate functions
Use a flexible (but sensible) functional basis set

Use Bayesian inference to estimate a,β,𝛿
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stuff

Example of theoretical constraints on parsimony

A third moment (e.g. M6) can be used as a measure of DSD

variance:

�2 =
1

Mc0

Z 1

0
N(D)(D3 �mc)

2dD =
Mc6

Mc0
�m2

c

Constraint on the possible values of DSD variance enforces a

structural form on the process rate for cloud self-collection

(. . . some math. . . )

b6m,csc = b0m,csc + 2 a6,csc � a0,csc (1)

Similar arguments reduce the total number of BOSS

parameters from 60+ to 37 for 3-moment cloud BOSS

Marcus van Lier-Walqui PSU Colloquium
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Figure 1: Regression used to produce
the KK autoconversion formula, excerpted
from Khairoutdinov and Kogan (2000)[2]
(https://doi.org/10.1175/
1520-0493(2000)128<0229:

ANCPPI>2.0.CO;2).

I Process rates in bulk microphysics schemes are
subject to some theoretical constraints (e.g.
conservation of mass), but most cannot be derived
from “first principles”.

I Typically we choose a functional form for a process
rate, and fit it to data using (non)linear regression.

I This data is usually taken from simulations with bin
schemes; i.e. the bulk scheme is formulated as a
reduced-order approximation to some bin model.

I However, process rate formulas are o�enmodified or
“retuned” in the context of a “host” weather or
climate model to improve agreement of that larger
model with observations. 3
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Figure 4. Comparison of rain mass and rain mass process rates between bin scheme, 2M-RD, and 3M-RD, shown over space and time for one forcing period.

Columns from left to right show bin model values, 2M-RD values, 3M-RD values, the di↵erence between 2M-RD and bin, and the di↵erence between 3M-RD and

bin. Rows from top to bottom show rain mass mixing ratio, autoconversion rate, accretion rate, rain evaporation rate, and rain fall speed.
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bin. Rows from top to bottom show rain mass mixing ratio, autoconversion rate, accretion rate, rain evaporation rate, and rain fall speed.
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Figure 1: Regression used to produce
the KK autoconversion formula, excerpted
from Khairoutdinov and Kogan (2000)[2]
(https://doi.org/10.1175/
1520-0493(2000)128<0229:

ANCPPI>2.0.CO;2).
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conservation of mass), but most cannot be derived
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I Typically we choose a functional form for a process
rate, and fit it to data using (non)linear regression.

I This data is usually taken from simulations with bin
schemes; i.e. the bulk scheme is formulated as a
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Directly fitting process rates to a Bin model
manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 1. Histogram showing probability density of “true” (bin model) and fitted process

rates for M3 autoconversion rate when using the formulae from (a) 2M-NR1T, (b) 2M-NR2T, (c)

2M-RD, (d) 3M-NR1T, (e) 3M-NR2T, and (f) 3M-RD. Colorbar values are log10 of the fraction

of data points falling within the given bin in the histogram. The line where rtrue = rfit is plotted

in red.
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Testing direct fits in time-evolving 1D model

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 3. Time series of column-integrated autoconversion mass rate for the bin model and

BOSS schemes. Left: The first half-period of the precipitating case in Figure 2. Right: The first

half of the last period of the same case.

evaporates gradually between 300 s and 600 s, and some of the in-cloud rain evaporates435

with it. 2M-RD evaporates too much of this rain, likely because the late onset of auto-436

conversion means that the rain drops are too small (not allowing time for significant ac-437

cretion to occur) and the cloud drops too large to accurately partition evaporation be-438

tween the two. Relatively large error in the number evaporation formulae may also play439

a role.440

Figure 2 shows that the timing and magnitude of the first rain rate peak is almost441

the same in 2M-RD as in the bin model, even though 2M-RD produces less rain and pro-442

duces it later. This is likely due to the excessive size sorting that commonly occurs in443

2-moment sedimentation schemes, in which the leading edge of the rain mass falls faster444

than the rain number, so that the mass is increasingly associated with large particles that445

fall out quickly and undergo little evaporation (for instance, see Milbrandt and McTaggart-446

Cowan (2010) and Wacker and Seifert (2001)). Supporting this idea, Figure 4 shows that447

2M-RD has large fall speeds and almost no evaporation in the lowest model layers. Since448

3M-RD also uses only two moments for rain, it is subject to similar biases.449

To briefly summarize, we have identified four main sources of error in the results450

using BOSS with parameters from direct process fits:451

1. Most autoconversion occurs too late, and it is concentrated in too small of a re-452

gion spatially.453

2. Too much rain evaporates within the cloud (which may be due in part to the au-454

toconversion bias).455

3. Excessive size sorting causes rain mass to fall too quickly, so that too much rain456

reaches the surface.457

4. The single-term, non-rain-dependent autoconversion has even more significant prob-458

lems with timing, causing large errors in the ratio of accretion rate to autocon-459

version rate. 2M-NR1T begins autoconversion too early and increases it too grad-460

ually, while 3M-NR1T begins autoconversion much too late.461

The third item mentioned above is unsurprising for schemes that use two moments462

with single-term power law formulae to calculate the rain fall speeds, leading to exces-463

sive size sorting. The low accuracy of the predicted autoconversion rates, even using rain-464

dependent terms, is more surprising. Overall, these BOSS schemes could be argued to465

be reasonable bulk microphysics schemes (perhaps with the exception of 3M-NR1T), but466
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Testing direct fits in 1D model (2M vs 3M)
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Figure 4. Comparison of rain mass and rain mass process rates between bin scheme, 2M-RD, and 3M-RD, shown over space and time for one forcing period.

Columns from left to right show bin model values, 2M-RD values, 3M-RD values, the di↵erence between 2M-RD and bin, and the di↵erence between 3M-RD and

bin. Rows from top to bottom show rain mass mixing ratio, autoconversion rate, accretion rate, rain evaporation rate, and rain fall speed.
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Instead use direct fits as a (Bayesian) prior

Autoconversion rates in 1D model

Early oscillation Later oscillation

*Refine the prior with a likelihood using observations from time-evolving sim’n

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 7. Same as Figure 3, except for schemes tuned in the time-evolving context with the

1D driver.

uni. The 3M-RD-TE scheme (and to a lesser extent 3M-NR2T-TE) models the autocon-595

version in a way that makes the system highly sti↵, briefly producing spurious numer-596

ical oscillations even at a 5 s time step. However, these oscillations disappear if a 1 s time597

step is used (grey line), and this scheme is still the most accurate emulator of the bin598

model.599

The 3M-NR1T-TE scheme produces an odd shape with two distinct modes in time,600

despite the relative simplicity of its treatment of autoconversion. This is due in part to601

an excessive evaporation of cloud number for this scheme — shown in Figure ??(b) —602

which increases the mean cloud drop size and hence autoconversion rate. Perhaps it should603

not be surprising that 3M-NR1T-TE uses an unusual tuning of other processes to a↵ect604

its autoconversion rate, given that the number of parameters is much higher than for 2M-605

NR1T-TE (37 versus 25), but the autoconversion formula still is not flexible enough to606

directly match the bin model process rates very well, as seen in Figure 1(d). As a result,607

the most e↵ective way for 3M-NR1T-TE to reduce error in the observed rain moments608

is by tuning other processes in a way that indirectly improves the autoconversion rate.609

A notable di↵erence between the TE schemes and those using the single-process610

fits is that using rain information in the autoconversion rate is much less beneficial in611

the time-evolving context. Figure ??(a) shows that 2M-RD-TE does not produce a clearly612

better autoconversion rate than 2M-NR2T-TE, which has a peak autoconversion rate613

closer in time and amplitude to the bin model’s peak. The accretion-autoconversion ra-614

tio for is 2.68 for 2M-RD-TE and 4.41 for 2M-NR2T-TE, as opposed to 3.57 for the bin615

model, meaning that the two schemes have similar biases on this measure (albeit of dif-616

ferent size). Meanwhile, 3M-RD and 3M-NR2T-TE have nearly identical rain moments617

and rain-related process rates, and similar (but somewhat inaccurate) accretion-autoconversion618

ratio (2.61 and 2.71, respectively). These schemes di↵er mainly in the cloud number evap-619

oration and cloud self-collection (not shown). Table 4 shows that the TE schemes rely620

less on rain information to determine the autoconversion rate, since the rain-dependent621

term is always responsible for less of the total autoconversion when using the time-evolving622

tuning method. We can also see in Table 4 that the exponents brm and bn tend to be623

roughly constant or decrease in the TE schemes compared to the direct process fit schemes,624

while bcm and bK increase, suggesting that the rain-dependent term itself has a stronger625

dependence on the cloud properties and a weaker dependence on rain properties for the626

TE schemes.627

Besides the biases in autoconversion, as discussed in section 3.2, the direct single-628

process fits tended to produce too much rain evaporation relative to the amount of rain,629
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Figure 8. Same as 4, except that 2M-RD-TE and 3M-RD-TE are compared to the bin model.
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Structural choices must be evaluated in the 
context of adequate parameter constraint!



A larger structural error? 

Are separate cloud and rain categories the correct 

approach for bulk warm microphysics?
Adele L. Igel, H. Morrison, S. P. Santos, and M. van 
Lier-Walqui. Limitations of separate cloud and rain 

categories in parameterizing collision- coalescence for 
bulk microphysics schemes. JAMES, 2022. 
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This is something we are currently testing with BOSS!

Bin model ->

BOSS single-

category 4M—>




