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Motivation

Inject salt-water plumes at the ocean surface
— Droplets evaporate to leave sea salt aerosol
— Turbulent mixing lofts the aerosol to cloud base
— Increase cloud albedo and longevity

Limited opportunities for controlled field experiments
— Numerical Experiments

PINACLES: Predicting INteractions of Aerosol and
Clouds in Large Eddy Simulation

Similar simulations of stratocumulus cloud test case
for sensitivity studies

3 plumes injected a few km apart just above
the surface with identical properties

“Ship tracks” are
brightened cloud
areas that result
from aerosol
particles in ship
exhaust. They
are an
inadvertent
example of the
same cloud
responses MCB
seeks to use.
Credit: NASA

Image credits: Peter Blossey



Results — Microphysics schemes

z=100m
« P3 vs Morrison’2 microphysics schemes
z=100m
>
z=400m
X

Plume tracer contours from simulation using Morrison (black) microphysics
scheme, z=100m

1 Morrison et al., Journal of the Atmospheric Sciences (2005)

>Wyant et al., Journal of Advances in Modeling Earth Systems (2022) Plume width calculated from simulations in PINACLES using
P3 (red) and Morrison (black) microphysics schemes



Results — Microphysics schemes

Cloud water mixing ratio Cloud number concentration Liquid Water Path

Mean vertical profiles and time evolution calculated from simulations using P3 (red) and Morrison (black) microphysics schemes

P3 (red) Morrison (black)



Results — Passive and active plumes

Plume width calculated from simulations in
PINACLES using passive (black) and active
(blue) plumes

Passive vs active plumes

Little difference in plume lofting,
with our current resolution
Aerosol in the plumes result in
much smaller cloud droplets
Aerosol in the plumes lower
liquid water path

Cloud water mixing ratio Cloud number concentration Liquid Water Path

Mean vertical profiles and time evolution calculated from simulations using passive (black) and active (blue) plumes



Conclusions

« Sea salt plumes introduced at the ocean surface spread and loft to the clouds

« Microphysics schemes have significant impact on the clouds and plume spread

« Active plumes modify cloud coverage, but have little effect on plume spread

« Different scalar and momentum advection schemes also result in differences of the
same order

Future Work
« Simulations with higher grid resolution
« Simulations of different types of stratocumulus cloud setups

More info: Poster session 3, number 45



The impact joint variability of liquid water and droplet
concentration on grid-mean autoconversion and
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Impact of subgrid-scale variability on grid-mean process rates

* Neglect of SGS variability can produce biases in microphysical process rates
« Some ESMs account for via a simple “enhancement factor” multiplier E

For a bivariate lognormal distribution P(q_,N_), E can be written as

(1) Contribution to E from variability of cloud water mixing ratio (q,)
(2) Contribution to E from variability of cloud droplet concentration (N,)
(3) Contribution to E from the covariance between g, and N,

« Here we present results from large-eddy simulation (LES) with bin microphysics to
analyze the impact of the co-variation of cloud water g, and cloud droplet
concentration N, on SGS variability and enhancement factor E



Impact of subgrid-scale variability on grid-mean process rates

Correlation between
g.and N,



Contributions to E from variability in q., N., and COV(q., N_)

Conclusions
2 En » Both bulk and bin
Correlation between simulations suggest that E
9cand Ne should be lower than the
3.2 value commonly used
* Covariance between q,
and N. responsible for the
reduction in E
* Large correlation between
q.and N, near cloud top
suggests inhomogeneous
mixing

ECOV E Single moment E (g, only)
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Aerosol and Cloud Experiment in Eastern North Atlantic (ACE-ENA)

Azores

ENA site: Particle number size
distribution, CN, Ny, particle
hygroscopicity (Keen)

Aircraft measurements: aerosol
properties and cloud microphysics

Wang et al., 2022, BAMS
2



Hoppel Minimum and Maximum Supersaturation
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Maximum Supersaturation in the Clouds

SCCN measured
particle activation
spectrum

Hoppel

Minimum SSmax.sceN

Clear seasonal
variations with high
values in winter



Dependence on CCN Concentration and Meteorological Parameters

Inversion layer height (m)  Lower tropospheric stability (K)  Inversion strength (K)

Suppression
of SS, .,
by increased
condensation
sink of water
vapor at high

|\ICCN'

Stronger
convection as
cold air advects
over warm ocean
following the
passage of fronts

The strong updrafts are associated
with strong radiative cooling on
cloud top, and stronger latent heat
release, which scales with the cloud
thickness. Thicker clouds are often
formed in deeper MBL. Lower static
stability allows for deeper MBL, as
does reduced subsidence.

MLR
R2=0.57



Summary

» Hoppel Minimum in the marine boundary layer is the result of processing by non-

precipitation clouds.

» SS__ in the cloud is derived from Hoppel Minimum and aerosol activation measurements

max
at the ENA site.

» SS, ., over the Eastern North Atlantic shows a clear seasonal variation.

» SS,.., variation is related to CCN number concentration, pressure, lower tropospheric

stability, and inversion layer height.
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Scientific Objectives

* Better detect and understand the liquid-phase cloud response to aerosol
perturbations in observations through constraining large-scale meteorological factors

We started this project with the marine boundary layer clouds over the ENA region



Constrain meteorological controlling factors

Multiple meteorological variables clustering
* Daily U, V, T, Q, Relative humidity profiles (7 pressure levels for now)

« ECMWEF analysis for the ARM ENA site: 2015-2020 JJA. 276 no-deep-
convection days in total

e Unsupervised clustering algorithms (MiniBatchKMeans, DBSCAN, Spectral
Clustering)

Analyze ARM observed cloud and surface CCN for each cluster

e Daily LWP and surface CCN (550.2%): 2016-2019 JJA, 111 days from
ARM Best Estimate Data Products (ARMBE)

Advantages and challenges
 The approach is applicable to model analyses
* Limited observed variables and data samples

Future work
e Optimize the clustering process
* Expand the sample size through including different ARM sites

* (Case study based on the clustering result

Calendar of clusters

Relative humidity in three clusters as an example

ENA Obs CCN,; $50.2% vs. LWP



Cloud susceptibilities over the ENA region from Meteosat retrievals

LWP-N4 climatology LWP Albedo &5
/ Shaoyue Qiu
LLNL
Shaoyue Qiu’s
‘ virtual poster for
Different cloud regimes including broken clouds more information

Meteorological conditions are
better constrained in the
instantaneous spatial
correlation within each 1°x1°

grid Cloud LWP susceptibility

Diurnal variability

Cloud LWP

Daytime half-hourly data during July
2018-2021: ~ 8x10* samples for the region
(33-43°N, 23-33°W)



Understanding the microphysical control and spatial-temporal
variability of warm rain probability using CloudSat and
MODIS observations
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Warm rain in marine low clouds (MLC)

Warm rain is generated by the collision coalescence

process and prevalent in MLC
Precipitation rate is difficult to quantify

Warm rain is important for from remote sensing observations
o Water budget in MLC (important sink of water)
o Lifetime of MLC Many previous studies used the PoP to
o Radiative effects of MLC study warm rain. ( Lebsock et al. (2008) and
. . o L’Ecuyer et al. (2009) Wang et al. 2012; Mann et al.
o Aerosol-cloud interactions (lifetime effects) 2014; Song et al. 2018, Millmenstidt et al. 2020)

Measurements of warm rain

o Intensity/precipitation rate
o Fraction/probability (e.g., PoP)

Ground-based w-band radar reflectivity
Zhang et al. 2021



PoP is important and useful Song etal. 2018

OBS

Wang et al. 2012
CAM5



Motivation and Objectives

e Derive the warm rain probability (i.e., PoP) from the observation
(MODIS+CloudSat)

e Investigate the dependence on PoP on cloud properties

o Cloud liquid water path (LWP)
o Cloud Droplet Number Concentration (CDNC)

e Understand the spatial-temporal variability of PoP
o Transition of PoP from stratocumulus to cumulus cloud regimes
o Seasonal variation of PoP in stratocumulus cloud regions

Key Hypothesis

(PoP) = Jj PoP(LWP,CDNC)PDF(LWP,CDNC)dLWPdCDNC

_ /‘ Universal PDF
Grid mean PoP microphysical control of cloud properties



Data and Methodology

e MODIS-CloudSat collocated product
o ldentify MLC from MODIS and CloudSat data
m “Cloudy” and “Liquid-phase” based on MODIS observation
m Cloud top < 3km based on CloudSat/CALIOP
o ldentify precipitation from CloudSat data
m  Maximum radar reflectivity in the column dBZ_max > -15

e Definition of PoP

o PoP = Number of precipitation MLC clouds / Number MLC clouds in an area (grid, region)
and over certain period (monthly, seasonal, annual)



Properties of MLC in Tropics

Total CF

Low CF



Properties of MLC in Tropics

PoP

LWP

CDNC

PoP = Number of precipitation
MLC clouds / Number MLC
clouds

LWP: integrated total water in
clouds

CDNC: Number of droplet in
clouds



Pro pe rt|es Of M LC |n Trop|CS small LWP + large CDNC -> small PoP

PoP /

LWP

CDNC /

Large LWP + small CDNC -> large PoP



Parameterization of PoP
Logistic function

Co = —69, C1 = 57, Cr = —3.2

(PoP) = f j PoP(LWP,CDNC)PDF(LWP,CDNC)dLWPAdCDNC



Parameterization of PoP

PoP based on observation

PoP based on parameterization

v" Universal microphysical control

Error between parameterization and observation
(PoP) = || PoP(LWP,CDNC)PDF(LWP,CDNC)dLWPdCDNC



Understanding the St to Cu transition of PoP

(d))

EP

e

What is the main reason
for the increase of PoP
from Sc to Cu?



What is the main reason for the PoP transition?

e PoP increases from Sc to Cu region
e |LWP increases slightly and CDNC decreases significantly

To understand the relative role of LWP
and CDNC, we did the following test

We derived the following two sets of
<PoP>
e LWP fixed PDF(<LWP>, CDNC)
e CDNC fixed PDF(LWP, <CDNC>)

The idea is to keep one factor fixed and
allow the other to vary from Sc to Cu

(PoP) = ff PoP(LWP,CDNC)PDF(LWP,CDNC)dLWPdACDNC



Understanding the St to Cu transition of PoP

/ Decreases of CDNC dominates

LWP fixed PDF(<LWP>, CDNC) CDNC fixed PDF(LWP, <CDNC>)



Understanding the Seasonal variation of PoP

Seasonal variation of LWP dominates

LWP fixed PDF(<LWP>, CDNC) CDNC fixed PDF(LWP, <CDNC>)



Summary

e PoP of MLC over tropical oceans is derived from the collocated MODIS and
CloudSat products

e A logistic function based parameterization scheme is developed to quantify
the dependence of PoP on LWP and CDNC

e The parameterization can be used to understand the the spatial-temporal

variation of PoP
o Scto Cu transition is mainly caused by the decrease of CDNC.
o The seasonal variation of PoP is mainly caused by the seasonality of LWP.



Outlook

e The PoP parameterization scheme can be used to evaluate the warm rain

simulations on the GCMs

o The PoP(LWP, CDNC) (color) can be used to evaluate the warm rain scheme
o The PDF(LWP, CDNC) (line) can be used to evaluate the cloud scheme
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Bulk parameterization of microphysics remains challenging:

e Significant advances have been made in detailed process modeling (e.g. Lagrangian
microphysics) but there is uncertainty in how this can be used to develop simplified/

reduced order approaches for bulk schemes.

e Fundamental uncertainty owing to significant knowledge gaps in cloud physics,
especially for the ice-phase (relevant to all schemes including Lagrangian and bin).

® Laboratory studies are essential to gain process-level microphysics knowledge, but
there is uncertainty in how to incorporate such data into schemes (limited sampling
conditions, questions of how results scale to real clouds, etc).

® Wealth of natural cloud and precipitation observations but difficult to measure process
rates directly, only net effects on hydrometeors —> an indirect constraint of bulk

schemes



Overview of the warm rain microphysics problem

The BIG question: How to use these various data sources — each with their own
uncertainties — to constrain bulk schemes?

® As more complex bulk schemes are developed this makes indirect constraint (i.e.,
tuning) even more difficult...

e Simply stated: we want to incorporate uncertain “observations” (or process model
data) in a parameterization with basic cloud physics knowledge in a rigorous way.

@ [his is a Bayesian problem, and we can therefore use Bayesian statistics to
address it rigorously... -

Thomas Bayes (1701-1761) |

Plxly) = =20







BOSS

Bayesian (we treat uncertainties robustly, uncertainties reside in parameters)
Observationally-constrained (scheme is informed by comparison to observations)
Statistical-physical (we don't just want a statistical scheme, but we will use statistics)

Scheme — bulk microphysics parameterization scheme (so far rain & cloud only)
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BOSS

Bayesian (we treat uncertainties robustly, uncertainties reside in parameters)
Observationally-constrained (scheme is informed by comparison to observations)
Statistical-physical (we don't just want a statistical scheme, but we will use statistics)

Scheme — bulk microphysics parameterization scheme (so far rain & cloud only)

Parameter PDF
Observable
Quantities
Process-level
Information

Morrison et al. JAS 2020; van Lier-Walqui et al. JAS 2020, Morrison et al. JAMES 2020, Reimel et al. (in prep)
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No assumed DSD functional form
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Get rnid of fixed process rate functions

Use a flexible (but sensible) functional basis set

de pn—l—l Bpn,l’k
—— ~ F(T,p,q Zaz e My, H

[=1 n=1
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Get rnid of fixed process rate functions

Use a flexible (but sensible) functional basis set

v

L N—1 Bp, 1.k
single drop processes de ~ F(T, D, C]) Z ar kMpl H (Mpn—l—l > ’
at [=1 n=1 Mp”
L N—1 Opr 1.k
drop-drop interactions de ~ F(T’ D, q) Z alk Mgl (Mpn+1 ) ’
i =1 n=1 Mp,

Using Morrison et al (2019) normalization
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number of power law terms
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Get rnid of fixed process rate functions

Use a flexible (but sensible) functional basis set

single drop processes

drop-drop interactions

Using Morrison et al (2019) normalization

Allow for systematic adjustment of complexity in and
number of power law terms
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Structural error estimation and parsimony

® We test various structural choices in BOSS against existing schemes
(bulk/bin) with varying structural complexity

e 2-moment (M0,M3), 2-category (cloud, rain)
® 3-moment cloud (M0,M3,M6), 2-moment rain
® Rain-dependent autoconversion
® Normalized vs. un-normalized
e Constrain parameters for each structural choice:
e Constrain process rates directly (akin to box model)

e Constrain with time- and spatially-evolving 1D column
simulations

e Calculate posterior predictive probability P(y’|y) with out-of-sample
simulations — this test evaluates precision, accuracy, and parsimony

Example of theoretical constraints on parsimony

A third moment (e.g. M6) can be used as a measure of DSD
variance:
Mc6 2

1 /OO

2 3 2

7= N(D)(D”> —m.)°dD = m,
M 0 ( )( ) M

Constraint on the possible values of DSD variance enforces a
structural form on the process rate for cloud self-collection
(...some math...)

me,csc — bOm,csc =+ 2 &6,050 2 a(),csc (1)

Similar arguments reduce the total number of BOSS
parameters from 60+ to 37 for 3-moment cloud BOSS



Directly fitting process rates to a Bin model

Autoconversion rates: bin vs. BOSS fits

Direct process fits with BOSS

@ Directly fit BOSS parameters to
match existing TAU bin scheme
autoconversion process rates

@ [est 1-term process rate
formulation vs. 2-term

@ Test 2-moment cloud/rain vs.
3-moment cloud, 2-moment rain

@ Test rain-dependent autoconversion
term

@ Observational uncertainty is treated
as an unknown (using conjugate

prior)



Directly fitting process rates to a Bin model

Autoconversion rates: bin vs. BOSS fits

2-moment 3-moment

Direct process fits with BOSS

@ Directly fit BOSS parameters to
match existing TAU bin scheme 1-term
autoconversion process rates

@ [est 1-term process rate
formulation vs. 2-term

@ Test 2-moment cloud/rain vs.
3-moment cloud, 2-moment rain

2-term

@ Test rain-dependent autoconversion
term

@ Observational uncertainty is treated
as an unknown (using conjugate Rain-dependent

prior)



Testing direct fits in time-evolving 1D model

Looking at autoconversion rates tuned via direct
fitting in 1D model simulations

Early oscillation Later oscillation



Testing direct fits in 1D model (2M vs 3M)

Rain M3

Autoconversion

Accretion

Evaporation

Fall speed



Instead use direct fits as a (Bayesian) prior

*Refine the prior with a likelihood using observations from time-evolving sim’n

Autoconversion rates in 1D model

Early oscillation Later oscillation



Testing direct/1D fits in 1D model (2M vs 3M)



Structural choices must be evaluated in the
context of adequate parameter constraint!



A larger structural error?

Are separate cloud and rain categories the

correct

approach for bulk warm microphysics?

Adele L. Igel, H. Morrison, S. P.

Santos, and M. van

Lier-Walqui. Limitations of separate cloud and rain

categories in parameterizing collision- coalescence for

bulk microphysics schemes. JAM.

7S, 2022.

(See also Kogan & Belochitski JAS, 2012.)



A larger structural error?

Are separate cloud and rain categories the correct
approach for bulk warm microphysics?

Adele L. Igel, H. Morrison, S. P. Santos, and M. van

Lier-Walqui. Limitations of separate cloud and rain

categories in parameterizing collision- coalescence for
bulk microphysics schemes. JAMES, 2022.

(See also Kogan & Belochitski JAS, 2012.)

This is something we are currently testing with BOSS!

Bin model ->

BOSS single-
category 4M—>
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Conclusions & Acknowledgments

e BOSS provides a level playing-field to judge structural choices

® Direct-fit fidelity does not indicate online accuracy — adequate
constraint is critical to evaluate structural choices

e Autoconversion is improved by including a 3rd moment of the
cloud distribution (M6)

e Bayesian estimation of parametric error in the presence of
structural errors is not trivial (not discussed here)

e Other structural choices (single vs. two liquid categories) are
currently under investigation

® Accuracy vs. precision: how to quantify & propagate structural
and parameteric uncertainties?

ASR Grant no. DE-SC0016579

ESMD Grant no. DE-SC0021270






JEFE (Sean P. Santos)
JEFE: Measuring Predictability

JEFE: Jacobian Evaluation of Functional Error

Figure 3:Adjoint-model-derived estimates of relative error of highly-

accurate bulk schemes for cloud mass (left) and radar reflectivity (right).
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A Challenge: inference complicated by state
errors, initial & boundary condition uncertainty

Some aspects of the atmosphere behave chaotically: errors “Data Assimilation” — correcting the state of a model forecast
grow nonlinearly from small perturbations, reducing predictability with observations

How to learn physics when simulation error may

be dominated by initial condition error?

Lorenz (1963) Tandeo et al. (2018)
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Model error may be easier to tackle in
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Bulk parameterization of microphysics remains challenging:

e Significant advances have been made in detailed process modeling (e.g. Lagrangian
microphysics) but there is uncertainty in how this can be used to develop simplified/

reduced order approaches for bulk schemes.

e Fundamental uncertainty owing to significant knowledge gaps in cloud physics,
especially for the ice-phase (relevant to all schemes including Lagrangian and bin).

® Laboratory studies are essential to gain process-level microphysics knowledge, but
there is uncertainty in how to incorporate such data into schemes (limited sampling
conditions, questions of how results scale to real clouds, etc).

® Wealth of natural cloud and precipitation observations but difficult to measure process
rates directly, only net effects on hydrometeors —> an indirect constraint of bulk

schemes
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Overview of the warm rain microphysics problem

The BIG question: How to use these various data sources — each with their own
uncertainties — to constrain bulk schemes?

® As more complex bulk schemes are developed this makes indirect constraint (i.e.,
tuning) even more difficult...

e Simply stated: we want to incorporate uncertain “observations” (or process model
data) in a parameterization with basic cloud physics knowledge in a rigorous way.

@ [his is a Bayesian problem, and we can therefore use Bayesian statistics to
address it rigorously... -

Thomas Bayes (1701-1761) |
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BOSS

Bayesian (we treat uncertainties robustly, uncertainties reside in parameters)
Observationally-constrained (scheme is informed by comparison to observations)
Statistical-physical (we don't just want a statistical scheme, but we will use statistics)

Scheme — bulk microphysics parameterization scheme (so far rain & cloud only)

Parameter PDF
Observable
Quantities
Process-level
Information

Morrison et al. JAS 2020; van Lier-Walqui et al. JAS 2020, Morrison et al. JAMES 2020, Reimel et al. (in prep)
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