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The BOSS Framework: Microphysics With No Assumed Drop Size Distribution

BOSS: The Bayesian Observationally constrained Statistical-physical Scheme

Figure 1:Rain-related quantities from kinematic driver using TAU bin
scheme and BOSS schemes using two (2M-RD-TE) or three (3M-RD-
TE) cloud moments. Rightmost two columns show deviation from the
reference for two and three moment schemes, respectively.
• Microphysics process rates from the TAU bin model are fit

using simple power laws in a 1-D kinematic driver.

Figure 2:Autoconversion rates. Black=bin model,
Red=power law, Yellow=sum of two power law
terms, Blue=two terms with rain moments.

• BOSS schemes
with three
cloud moments
perform much
better than
those with two
cloud moments
(Fig. 1).

• Although
rain moments
are useful for
diagnosing the
autoconversion
rate “o�ine”,
they do not benefit the model in a time-evolving context
(Fig. 2).

• We are developing a “single category” version of BOSS
with no artificial rain/cloud distinction.

JEFE: Measuring Predictability

JEFE: Jacobian Evaluation of Functional Error

Figure 3:Adjoint-model-derived estimates of relative error of highly-
accurate bulk schemes for cloud mass (left) and radar reflectivity (right).

Conclusions

• Two-moment schemes with separate rain and cloud categories
are generally unable to emulate bin model precipitation.

• Box model studies (AMP and JEFE) show that four-moment
single-category schemes are more accurate. We are working
on corroborating this with BOSS.

• All studies agree that using three or more cloud moments
substantially improves two-category autoconversion rates for
scheme.

• Lowering the threshold size separating cloud from rain may
also help base on AMP results.

AMP: A Bulk Scheme With Bin Physics

AMP: An Arbitrary Moment Predictor

Figure 4:Comparison of cloud
mass between bin and AMP
schemes for di�erent box
model simulations. Di�erent
colors=di�erent error terciles.

• The Hebrew University bin model
was used to produce a bulk
reconstruct-evolve-average
collision-coalescence scheme.

• Using separate rain and cloud
categories, defined by a 40 micron
size cuto�, (schemes c03-r03 and
c038-r038 in Fig. 4) is less
accurate than using moments of
the full hydrometeor size
spectrum (scheme f0349).

• Two-category schemes perform
much better with a 25 micron
cuto�, though the two-moment
scheme struggles with rain
reflectivity (not shown).

• More details in Igel et al., 2022.
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Figure 1: Partitioning of model simulation errors for different intercomparison projects
(Lehner et al., 2020). Note the dominant model errors at 10- to 40-year time scale.

This simulation scope tightly connects to the definition of metrics and the development of
“improved” metrics as target to the CESM. LEAP will first leverage existing evaluation
packages such as the ESMValTool or iLAMB (for the land component), but will also go
beyond those traditional metrics. The new “LEAP” metrics will focus on climate projections,
especially targeted towards adaptation. For instance, mean precipitation might be a useful
model target, but many stakeholders are concerned with the prediction of extremes in
precipitation (and climate variability, see next related question), which might be even more
important as they drive flooding events and hazards. In parallel, many of the hardest physical
processes we want to emulate occur at fast timescales (e.g. convective organization, ocean
and atmosphere turbulence, microphysics) where issues with the parameterizations, and
especially its coupled biases, can be exposed even in short multi-day simulations (as
demonstrated in numerical weather forecasting systems). Our focus on these processes
provides opportunities to correct model errors even on shorter time scales and will naturally
lead to shorter-term metrics constrained by observations that will also impact long-term
metrics (e.g., atmospheric boundary layer temperature biases).
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