

Pacific Northwest

Radar data updates

BROOKHAVEN

YA-CHIEN FENG¹, ALYSSA MATTHEWS¹, KAREN JOHNSON², MIN DENG²

L

¹Pacific Northwest National Laboratory ² Brookhaven National Laboratory

· Los Alamos

U.S. DEPARTMENT OF

Argonne

Radar data

Radar data

Contact us: radar@arm.gov

ARM

Current radar operational status (data monitoring)

				AMF 1	AMF1	AMF 2	AMF 3
	ENA	NSA	SGP	EPCAPE 2023 02	TRACER 2021-2022	SAIL 2021-2022	BNF 2023 09
	KAZR2	KAZR	KAZR	KAZR	KAZR*	KAZR*	KAZR
Cloud radars	KaSACR2*	KaSACR2*	KaSACR	KaSACR	KaSACR*		KaSACR
	WSACR2*	WSACR2*	WSACR	WSACR	XSACR*		XSACR
	XSAPR2	XSAPR*	XSAPR-SW		CSAPR2*		CSAPR2
Precipitation			XSAPR-SE				
radars					Operational		nal
			XSAPR-NW			Data eva	luation
					Future works		orks
S. DEPARTMENT OF			CSAPR			Upcomin	ig campaign
NERGY 4							

Radar data

Contact us: radar@arm.gov

	Non-meteorological signal identification (data quality masking)
Centimeter Precipitation radars (C, X bands)	 Ground clutters Biology signals Extraneous radio
Millimeter Cloud radars (Ka, W bands)	 frequency interference Second trips Bragg scattering

EI

Centimeter Precipitation radars (C, X bands) - Ground clutters - Biology signals - Extraneous radio frequency interference - Second trips		Non-meteorological signal identification (data quality masking)
Millimeter Cloud radars - Second trips	Centimeter Precipitation radars (C, X bands)	 Ground clutters Biology signals Extraneous radio
(Ka, W bands)	Millimeter Cloud radars (Ka, W bands)	 Frequency interference Second trips Bragg scattering

	Non-meteorological signal identification (data quality masking)	Data calibration Data intercomparison between instruments $Z_{correction} = Z_{obs} + Z_{bias} + Z_{attenuation}$
Centimeter Precipitation radars (C, X bands)	 Ground clutters Biology signals Extraneous radio 	 Z, ZDR systematic bias correction Attenuation estimation
Millimeter Cloud radars (Ka, W bands)	frequency interference - Second trips - Bragg scattering	 Corner reflector Gaseous attenuation GE/MD mode comparison, wet- radome issue

	Non-meteorological signal identification (data quality masking)	Data calibration Data intercomparison between instruments $Z_{correction} = Z_{obs} + Z_{bias} + Z_{attenuation}$	
Centimeter Precipitation radars (C, X bands)	 Ground clutters Biology signals Extraneous radio 	 Z, ZDR systematic bias correction Attenuation estimation Comparison with neighboring instruments, e.g. collocated ARM radars/ WSR-88D, disdrometer, radar 	
Millimeter Cloud radars (Ka, W bands)	 frequency interference Second trips Bragg scattering 	 Corner reflector Gaseous attenuation GE/MD mode comparison, wet- radome issue wind profiles (RWP). RCA technique (for scanning radars) Other measurements uncertainties 	

KASACR corner reflector

U.S. DEPARTMEN

	Field campaigns	Preliminary analysis	b1 data release	b1 report	Expect dates
Poster	COMBLE	Completed	Completed	In progress	2022 Oct
2, #90	MOSAIC	Completed			2022 Dec
Poster 2, #65	TRACER	In progress			2023 March
	SAIL	In progress			2023 spring
	ENA (3 months)	In progress			2023 summer
	NSA (6 months)	In progress			2023 fall
	SGP (3 months)	In progress			2023 fall

Contact us: radar@arm.gov

For engineering and data team

Backup slides

SAIL and TRACER data

SAIL and TRACER KAZRs

Stable during the field experiments

TRACER CSAPR2

- Nov 23, 2021 April 20, 2022: a1 data with DQR data, no b1-level files
- April 21, 2022 Sep 30, 2022: b1-level data during the IOP
- Issues of jumping background Z noise and abnormal ZDR were fixed in March after change LNAs and SATLO. During the intensive IOP, CSAPR2 was sometimes affected by lightnings leading to maintenances and restarts, e.g. the control board was replaced after a storm in mid July.

TRACER SACR

- May 1 Sep 30
- KaSACR Nyquist was modified on July 12 as PI preference
- Radar hardware was affected by the high humidity and high temperature weathers, leading to chiller issues (for example in June 28).

Eastern North Atlantic (ENA), Graciosa Island (2022 May)

- Ka/WSACR2 is operational after a trip by the radar mentors and an initial scan strategy is being implemented and will be discussed with the science community.
- The SAPR transmitter was problematic and unable to be brought online. Discussions on the path forward are ongoing.
- Operational issues: Radar would be fixed vertically while in high wind condition.

Northern Slope of Alaska (NSA), Barrows Alaska (2022 Aug)

- Ka/WSACR2 was operational after a trip by the engineering team in Aug. The vertical channel receivers of SACR and LNA were replaced in Oct.
- XSAPR was operational after Tod replaced a transmitter in Oct.

New hydrophobic radome for KAZR

• The KAZRs need more hydrophobic antenna radomes. We have an ongoing problem of water pooling on the antennas in rain. This causes an unknown amount of signal attenuation, which lasts until the water is blown off or evaporates. The engineers can provide the best solution, whether replacing the radomes is necessary or if recoating the existing ones would suffice.

Radars	VPT	HSRHI	PPI	Special scans
TRACER				
CSARP2	VPT	54, 84, 114, 144, 174, 204 deg in azimuth 63*	0.5, 1.5, 3 deg in elevations	Cell tracking
X-Ka SACR	VPT	0, 30, 60, 90, 120, 150 deg in azimuth	1, 2 deg in elevations	
ENA				
KA-W SACR	VPT	270, 300, 330, 0, 30, 60, 90 deg in azimuth	1, 2, 3, 5 in elevation	
NSA	-			
KA-W SACR	VPT	51, 97, 141, 187 deg in azimuth	0.5, 1.5, 3 deg in elevations	
XSAPR U.S. DEPARTMENT OF ENERGY	VPT	52, 97, 141, 187 deg in azimuth	Ingest problem	