

Integrated Cloud, Land-Surface,& Aerosol System Study ICLASS

CACTI Facilitated Science: Past, Present, and Future

Adam Varble

Pacific Northwest National Laboratory

with vital contributions from many others

(who I will do my best to highlight in this talk)

2023 ARM/ASR Joint User Facility and PI Meeting

PNNL is operated by Battelle for the U.S. Department of Energy

Early stages of the 25 January 2019 storm that reached nearly 21 km ASL. Photo courtesy of Ramón Alberto Acuña (SMN).

Cloud, Aerosol, and Complex Terrain Interactions (CACTI) Background

First deployment of CSAPR2 with AMF1 instruments between Oct 2018 and Apr 2019 in the Sierras de Córdoba range of central Argentina.

Pacific

Northwest

IOP (Nov-Dec 2018) with 22 G-1 flights (8 Deep CI, 8 Cu, 3 µ-physics, 3 clear air), coincident with the NSF-led RELAMPAGO field campaign.

Amongst the most (> 250) datastreams/products produced of any AMF campaign.

https://www.arm.gov/research/campaigns/amf2018cacti

Varble, A. C., et al., 2021: Utilizing a Storm-Generating Hotspot to **Study Convective Cloud Transitions: The CACTI Experiment.** BAMS, doi:10.1175/BAMS-D-20-0030.1.

Nesbitt S. W., et al., 2021: A Storm Safari in Subtropical South America: Proyecto RELAMPAGO. BAMS, doi:10.1175/BAMS-D-20-0029.1.

Varble, A. C., et al., 2021: Utilizing a Storm-Generating Hotspot to Study Convective Cloud Transitions: The CACTI Experiment. BAMS, doi:10.1175/BAMS-D-20-0030.1.

Nesbitt S. W., et al., 2021: A Storm Safari in Subtropical South America: Proyecto RELAMPAGO. BAMS, doi:10.1175/BAMS-D-20-0029.1.

AMS special collection: https://journals.ametsoc.org/collection/RELAMPAGO-CACTI

Proposing Science Team

Principal Investigator

Adam Varble, Pacific Northwest National Laboratory

Co-Investigators

Stephen Nesbitt, University of Illinois	Paola Salio, Universidad de
Edward Zipser, University of Utah	Susan van den Heever, Colorado
Greg McFarquhar, University of Illinois	Paul DeMott, Colorado Stat
Sonia Kreidenweis, Colorado State University	Robert Houze, Jr., University
Kristen Rasmussen, Colorado State University	Michael Jensen, Brookhaven Na
Pavlos Kollias, McGill University	Ruby Leung, Pacific Northwest N
David Romps, Lawrence Berkeley National Laboratory	David Gochis, National Center for At
Eldo Avíla, Universidad Nacional de Córdoba	Christopher Williams, University of Co
Paloma Borque, University of Illinois	

With critical support from ARM infrastructure and management, INVAP (in country management), local landowners and government officials, NOAA (providing us GOES-16 rapid scan data), and NASA Langley (performing satellite retrievals).

Thank you to all the researchers that have worked with CACTI datasets since the campaign.

Buenos Aires

- o State University
- ate University
- of Washington
- ational Laboratory
- lational Laboratory
- tmospheric Research
- olorado-Boulder/NOAA

Management, Infrastructure, Support

Critical In Country Support

INVAP, Servicio Meteorológical Nacional (SMN), Forecasting Team (Lynn McMurdie, SMN and students), local government officials in Villa Yacanto and Rio Cuarto, Universidad de Córdoba, Fuerza Aérea Argentina (Air Force), Aeropuertos Argentina 2000 (AA2000), Empresa Argentina de Navegación Aérea (EANA), and Gobierno de la Provincia de Córdoba

ARM Ground Facilities

Heath Powers, Tim Goering, Peter Argay: AMF1 Operations Management Kim Nitschke: Former AMF1 Manager Vagner Castro, Juarez Viegas, Tercio Silva, Bruno Cunha: Site

Technicians Nitin Bharadwaj, Joseph Hardin, Andrei Lindenmaier, Brad Isom, Pete Argay, and Todd Houchens: Radar Engineering Stephen Springston, Art Sedlacek: Aerosol Systems Engineering

Many others: Instrument Operations, Engineering, Data Mentorship

ARM Aircraft Facility

Beat Schmid: Facility Manager

Jason Tomlinson: Engineering Manager

Mike Hubbell: Flight Operations Manager/Pilot

Clayton Eveland, Jon Ray, and Jen Armstrong: *Pilots*

Alyssa Matthews, Mikhail Pekour, Lexie Goldberger, Fan Mei, Matt Newburn, Kaitlyn Suski, Alla Zelenyuk-Imre, Mike Crocker, Luke Marx, Pete Carroll, Albert Mendoza, Dan Nelson, and Tom Hill: Engineering, Operations, and Data Mentors

ARM Infrastructure

Jim Mather, Nicki Hickmon, Jennifer Comstock, Sally McFarlane: ARM Management Hanna Goss, Ryan Risenmay, Michael Wassem, Rolanda Jundt, Eric Francavilla, Robert Stafford, Cory Ireland: Communications Giri Prakash, Cory Stuart, Maggie Davis, Rob Records, David Swank: Data Flow and Storage Adam Theisen, Ken Kehoe, Austin King, Sherman Beus: Data Quality And so many others who contributed to engineering, import/export, installation, operations, communications, mentoring of instruments, and data guality/flow/storage without which CACTI would not exist!

Shallow clouds were observed directly overhead on 191 of 212 days, 165 of which had liquid clouds lasting 30 minutes or longer, many of which produced drizzle.

About 160 deep convective systems passed directly over the site on 83 separate days with a wide range of depth and organization.

Varble, A. C., et al., 2021, *BAMS*, doi:10.1175/BAMS-D-20-0030.1.

Borque, P., et al., 2022: Peak rain rate sensitivity to observed cloud condensation nuclei and turbulence in continental warm shallow clouds during CACTI. JGR Atmos., doi:10.1029/2022JD036864.

Radar calibration using ground clutter Alexis Hunzinger, Joe Hardin (PNNL)

Hardin, J. C., et al., 2020: CACTI Radar b1 Processing: **Corrections, Calibrations, and Processes Report,** DOE/SC-ARM-TR-244.

Hunzinger, A., et al., 2020: An extended radar relative calibration adjustment (eRCA) technique for higherfrequency radar and range-height indicator (RHI) scans, AMT, doi:10.5194/amt-13-3147-2020.

First extension of relative calibration via ground clutter to frequencies higher than C-band and RHI scans

Ka-, X-, and C-bands cross-calibrated using C-band absolute calibration

A one of a kind, 6.5-month Ka/X-SACR dataset that has been gridded, co-located with KAZR and C-SAPR2

Many shallow (including fog) and medium depth precipitating clouds, often with good low-level clear air signals

Ongoing Work: Interactions between NPF and convective clouds Yang Wang, Marcus Batista Oliveira (U. Miami)

- New particle formation events identified in G-1 data
- Examining how these relate to and interact with convective clouds

Processes controlling INP variability Baptiste Testa (U. Lyon), Paul DeMott (CSU), and colleagues

Testa, B., et al., 2021: Ice nucleating particle connections to regional Argentinian land surface emissions and weather during the Cloud, Aerosol, and Complex Terrain Interactions experiment, JGR Atmos., doi:10.1029/2021JD035186.

10

Aerosol and Turbulence Effects on Drizzle Paloma Borque (PNNL)

Borque, P., et al., 2022: Peak rain rate sensitivity to observed cloud condensation nuclei and turbulence in continental warm shallow clouds during CACTI. JGR Atmos., doi:10.1029/2022JD036864.

3300 warm (1900 w/precipitation), 2200 mixed phase (extending below freezing), and 160 deep cloud time-height objects

Further Shallow Cloud Research Opportunities Courtesy Paloma Borque

Potential Temperature

Ongoing Research: Congestus Deepening Processes Andrew Geiss (PNNL), Rusen Öktem and David Romps (LBL, UC-Berkeley) Northwest

Pacific

How does cloud top ascent rate and max depth correlate with congestus width?

Does LES replicate observations, such that entrainmentdriven dilution effects can be quantified?

NORTHWEST

Deep Convection Initiation Processes Jim Marquis (PNNL), Connor Nelson (U. Colorado)

With frequent orographic clouds and favorable deep convective thermodynamic conditions, many deep convection initiation (CI) success and failure cases were observed.

Marquis J. N., et al., 2021: Low-level Mesoscale and Cloud-scale Interactions Promoting Deep Convective Initiation. *MWR*, doi:10.1175/MWR-D-20-0391.1.

Nelson T. C., et al., 2021: Radiosonde Observations of Environments Supporting Deep Moist Convection Initiation during RELAMPAGO-CACTI. *MWR*, doi:10.1175/MWR-D-20-0148.1.

Marquis, J. N., et al., 2023: Near-cloud atmospheric ingredients for deep convection initiation, *MWR*, doi:10.1175/MWR-D-22-0243.1.

Updraft width is key to successful Deep Cl Jim Marquis (PNNL)

Max updraft widths on 29 Nov approach 5 km with coherence for 15-30+ minutes and correlate with the robust low level reflectivity areas downshear.

Max updraft widths on 4 Dec remain < 3 km, similar to the scale of boundary layer thermals.

Mesoscale convergence may promote wider updrafts that can overcome buoyancy dilution by entrainment aloft.

Mid-level humidity and large-scale ascent are also important (not shown)

Marquis J. N., et al., 2021, MWR, doi:10.1175/MWR-D-20-0391.1.

Marquis, J. N., et al., 2023, MWR, doi:10.1175/MWR-D-22-0243.1.

Ongoing Work: Orographic Flow Effects on Convective Clouds

Neil Lareau (U. Nevada, Reno)

- Upslope flow deepens with increasing cloud development
- LCL lowers with increasing cloud development
- *Thermally forced* upslope flow increases from clear to congestus mode, then decreases for deep mode
- *Mechanically forced* east-to-west flow in the midlevels increases on deep convective days
- Increasing stability suppresses the upslope flow but sensible heat flux has little correlation

Ongoing Work: Convective-scale ensemble predictability of an isolated thunderstorm Pacific Northwest Andres Lopez, Dan Kirshbaum (McGill U.)

- 21 member, 2.5-km WRF initial-condition ensemble
- Using CACTI AMF1 observations, identified a major soil moisture bias
 - Rectification greatly improved verification
- Gained fundamental insight into mechanisms of convection initiation

27

24

23

22

 Convective precipitation controlled by 3 preconvective parameters: CAPE, PBL upward mass flux, mid-level zonal wind

66°W 65°W 64°W 63°W

19:00

Interpreting sensitivity to U_{MI}

LASSO-CACTI Bill Gustafson, Andy Vocel

Bill Gustafson, Andy Vogelmann, and colleagues (PNNL, BNL)

- 20 cases with 33 ensemble members for the D02 domain (660 runs)
- 9 cases with D04 LES and multiple ensemble members (~35 total runs)
- Post-processed (subset, gridded) files and skill scores with observations
- Resides on ARM's Cumulus-2 cluster w/Jupyter; ARM is moving it for easier access (2 PB of data); email <u>lasso@arm.gov</u> for info
- Beta release: <u>https://discourse.arm.gov/t/lasso-cacti-beta-</u> release-documentation/118
- Breakout: Today, 2-4 PM, Poster session 4, posters 40, 42

Category	Domain(s)	Δx	Frequency	Period	Pu
Meso	D01, D02	7.5 km, 2.5 km	15 min	0–24 UTC	Full
Bridge	D03	500 m	15 min	6–24 UTC	Full
LES	D04	100 m	5 min	12–24 UTC	Full
Restart	D03, D04		30 min		Ena

WRF Model Domains $\Delta x = 7.5 \text{ km}, 2.5 \text{ km}, 500 \text{ m}, \& 100 \text{ m}$

rpose

model state and diagnostics

model state and diagnostics model state and diagnostics ble users to do restarts

Enoch Jo (PNNL); See session 4 poster 46

Ongoing Work: How mesoscale convergence facilitates deep convection initiation *Jim Marquis (PNNL); See session 4, poster 52*

Pacific

Northwest

NATIONAL LABORATORY

Convective Cell Track Database Zhe Feng (PNNL); Available as ARM PI product; See session 1, poster 47

Pacific

PyFLEXTRKR was used to separate, track, and save properties (Profiles of Z_e, Z_{DR}, K_{DP}, rain rate, D_m, RWC, GOES cloud tops) of ~6,900 convective cells on 74 days, matching them to sounding-derived atmospheric conditions.

Feng, Z, et al., 2022: Deep Convection Initiation, Growth, and Environments in the Complex Terrain of Central Argentina during CACTI, *MWR*, doi:10.1175/MWR-D-21-0237.1.

Feng, Z., et al., 2023: PyFLEXTRKR: A Flexible Python Feature Tracking Software for Convective Cloud Analysis. GMD, doi:10.5194/gmd-16-2753-2023.

https://github.com/FlexTRKR/PyFLEXTRKR

MUCAPE and MU LNB are good predictors for wide cell growth but not narrow cell growth, which correlates better with ACBL RH

Pacific

Northwest

- PWV is a good predictor for all cells but manifests as low-level moisture changes for wide cells and mid-level moisture changes for narrow cells.
- This is observational support for entrainment-driven dilution mattering for narrow but not wide updrafts, as found in idealized modeling studies

22

Simulated Convective Cell and System Growth Biases Pacific Zhixiao Zhang (U. Utah) Zhang, Z., et al., 2023, to be submitted to JGR-Atmospheres. Northwest

- Convection-permitting (3-km) WRF reproduces rainfall, but significantly underpredicts stratiform rainfall. •
- WRF has far too many convective cells (not due to resolution). •
- Large cells disproportionately contribute to convective rainfall in WRF. ullet
- Convective biases tend to decrease as CAPE increases though stratiform biases do not. ۲

Simulated MCS Growth Biases Zhixiao Zhang (U. Utah)

Zhang, Z., et al., 2021: Growth of Mesoscale Convective Systems in Observation and a Seasonal Convection-Permitting Simulation over Argentina. *MWR*, doi:10.1175/MWR-D-20-0411.1.

- WRF replicates observed MCS numbers, timing, and lifetimes.
- WRF also reproduces MCS cloud shield area and temperature
- WRF rain rates tend to be too heavy with insufficient areal coverage of lighter precipitation, a bias that worsens as MCSs become larger and longer lived

Aerosol Effects on Deep Convection Peter Veals (U. Utah)

CCN negatively correlates with deep convective depth, but only if controlling for LNB or CAPE

Increasing each variable:

Ongoing work at PNNL examining tracked cell microphysical modification by aerosols and modulation by intraconvective cell interactions

CCN Effects on Convective Cold Pools Sonia Lasher-Trapp, Toby Ross (U. Illinois)

MWR paper in review: "On CCN Effects upon Convective Cold Pool Timing and Features" See session 3 poster #49

Hypothesis: Storms ingesting more CCN have delayed precipitation and delayed cold pools

Results: Ordinary thunderstorms adhered to hypothesis, but the supercell (5 Dec) did not. Numerical modeling supported these results.

Ongoing Work: Thermodynamic controls on precipitation Northwest Fiaz Ahmed, Todd Emmenegger (UCLA); see session 2, poster 42

Implication: orography does not impact precipitation, independent of thermodynamics.

Pacific

Ongoing work aimed at understanding synoptic conditions that coincide with mid-tropospheric cooling.

A climatology of convective-storm environments Russ Schumacher (CSU); Clayton Sasaki (U. Washington)

Schumacher, R., et al., 2021: Convective-storm environments in subtropical South America from high-frequency soundings during RELAMPAGO-CACTI. MWR, doi:10.1175/MWR-D-20-0293.1.

Sasaki, C., et al., 2023: Influences of the South American low-level jet on the convective environment in central Argentina, MWR, in review.

Over 2700 soundings were launched in RELAMPAGO-CACTI.

LLJs varied from 500 m to > 2000m, weakening as they intersect the terrain. The more elevated LLJs may occur more frequently than over the Great Plains.

Cold pools varied greatly in depth and intensity, similar to the Great Plains.

Environments favorable to supercells and large hail were common, particularly in the immediate lee of the mountains.

Tornado-supportive conditions were much rarer (insufficient low level vertical wind shear and storm-relative helicity).

b) 10 November 2018 cold pool: virtual potential temperature (K)

Extreme Deep Convection

Arc Distance, +ve \rightarrow AZ = 30.0° [km]

Top: Courtesy Francina Dominguez; Bottom: Courtesy Russ Schumacher

Courtesy of Paola Salio

CACTI's success is a result of tremendous collaborative efforts by ARM staff, ASR investigators, in country support, NSF support, and many others, much of which goes unnoticed behind the scenes.

Over 250 CACTI cloud, aerosol, radiation, and atmospheric state datastreams and products from the AMF1, CSAPR2, and G-1 are now available with most on the ARM archive and LASSO output is soon to follow (access available now through ARM Cumulus-2 cluster).

https://www.arm.gov/research/campaigns/amf2018cacti

Many research opportunities exist to build on the foundation laid by completed tools, products, and studies, particularly related to the life cycles of clouds, aerosols, and their interactions.

Thank You

adam.varble@pnnl.gov

U.S. DEPARTMENT OF ENERGY BATTELLE PNNL is operated by Battelle for the U.S. Department of Energy

00

CACTI Observing Facilities (AMF1, G-1, CSAPR2)

Varble, A. C., et al., 2021, *BAMS*, doi:10.1175/BAMS-D-20-0030.1.

Nesbitt S. W., et al., 2021: A Storm Safari in Subtropical South America: Proyecto RELAMPAGO. BAMS, doi:10.1175/BAMS-D-20-0029.1.

(a) Córdoba domain

(b) Mendoza domain 4000 3500 Mendoza 33°S 3000 · 2500 Ê - 2000 -- 1500 - 1000 35°S - 500 0 67°W 70°W 69°W 68°W

RELAMPAGO Operations

Surface-Based Measurements

Ground-Based Instruments and Measurements				
Cloud and Precipitation Measurements	Instrumentation			
Cloud and Precipitation Kinematic and Microphysical Retrievals	C-band Scanning ARM Precipitation Radar, Ka/X-band Scanning ARM Cloud Radar, Ka-band ARM Zenith Radar, Rada Profiler			
Heights of Cloud Bases/Tops, Sizes, and Vertical Winds	ARM Cloud Digital Cameras			
Cloud Base Height	Ceilometer, Micropulse Lidar, Doppler lidar			
Cloud Scene/Fraction	Total Sky Imager			
Raindrop Size Distribution, Fall Speeds, and Rainfall	Parsivel Laser and 2D Video Disdrometers, Tipping and Weighing Bucket Rain Gauges, Optical Rain Gauge, Present Detector			
Liquid Water Path	2-Channel, High-Frequency, and Profiling Microwave Radiometers			
Atmospheric State Measurements	Instrumentation			
Precipitable Water	2-Channel, High-Frequency, and Profiling Microwave Radiometers			
Surface Pressure, Temperature, Humidity, Winds, and Visibility	Surface Meteorological Stations (4 sites)			
Vertical Profiles of Temperature, Humidity, and Winds	Radiosondes (2 sites), Radar Wind Profiler, Profiling Microwave Radiometer, Atmospheric Emitted Radiation Interferon			
Boundary Layer Winds and Turbulence	Doppler Lidar, Sodar			
Surface Condition Measurements	Instrumentation			
Surface Heat Fluxes and Energy Balance, CO ₂ Flux, Turbulence, and Soil Temperature and Moisture	Eddy Correlation Flux Measurement System, Surface Energy Balance System			
Aerosol and Trace Gas Measurements	Instrumentation			
Aerosol Backscatter Profile	Micropulse Lidar, Doppler Lidar, Ceilometer			
Aerosol Optical Depth	Cimel Sun Photometer, Multifilter Rotating Shadowband Radiometer			
Cloud Condensation Nuclei (CCN) Concentration	Dual Column CCN counter			
Condensation Nuclei (CN) Concentration	Fine and Ultrafine Condensation Particle Counters			
Ice Nucleating Particle (INP) Concentration	Filters processed in Colorado State University Ice Spectrometer			
Aerosol Chemical Composition	Aerosol Chemistry Speciation Monitor, Single Particle Soot Photometer			
Aerosol Scattering and Growth	Ambient and Variable Humidity Nephelometers			
Aerosol Absorption	Particle Soot Absorption Photometer			
Aerosol Size Distribution	Ultra-High Sensitivity Aerosol Spectrometer, Scanning Mobility Particle Sizer, Aerodynamic Particle Sizer			
Trace Gas Concentrations	O ₃ , CO, N ₂ O, H ₂ O Monitoring Systems			
Radiation Measurements	Instrumentation			
Radiative Fluxes	Broadband Direct, Diffuse, and Total Downwelling Downwelling Radiation Radiometers, Broadband Upwelling Radiation Radiometers, Ground and Sky Infrared Thermometers, AERI, Narrow Field of View 2-Channel Zenith Radiometer, Hen and Zenith Shortwave Array Spectroradiometers, Multifilter Radiometer, Multifilter Rotating Shadowband Radiometer, C Sun Photometer, Surface Energy Balance System, 2-Channel, High-Frequency, and Profiling Microwave Radiometers			

Ka-band ARM Zenith Radar, Radar Wind

es, Optical Rain Gauge, Present Weather

neric Emitted Radiation Interferometer

amic Particle Sizer

s, Broadband Upwelling Radiation Channel Zenith Radiometer, Hemispheric ating Shadowband Radiometer, Cimel

Time (UTC)	Situation
13:02–17:01 Nov 4	Deepening orographic cumulus
13:09–17:05 Nov 6	Deep convection initiation; likely warm rain
12:10–16:10 Nov 10	Deepening orographic cumulus prior to deep convection initiation
16:48–20:00 Nov 12	Elevated deep convection, low-level stable cumulus and stratus
14:00–18:00 Nov 14	Clear air aerosol sampling
13:05–16:00 Nov 15	Clear air aerosol sampling
14:05–18:00 Nov 16	Boundary layer and elevated orographic cumulus
12:18–16:30 Nov 17	Congestus along cold front; wind-blown dust; mountain wave
15:10–19:06 Nov 20	Orographic cumulus; strong inversion
18:22–20:27 Nov 21	Orographic congestus and deep convection initiation
14:31–18:11 Nov 22	Stratiform anvil sampling along radar north-south scans
16:17–20:25 Nov 24	Orographic cumulus line; strong inversion
15:51–19:07 Nov 25	Orographic cumulus line; potential decoupling from boundary lay
15:08–18:50 Nov 28	Orographic congestus and deep convection initiation
14:16–16:32 Nov 29	Orographic congestus and deep convection initiation
16:20–18:47 Dec 1	Elevated drizzle in orographic stratocumulus; possible ice
12:06–16:11 Dec 2	Elevated drizzle in widespread clouds; possible ice; gravity wave
16:03–20:09 Dec 3	Boundary layer coupled orographic cumulus; strong inversion
17:51–19:45 Dec 4	Deepening congestus and some deep convection initiation
12:04–15:28 Dec 5	Mid-level clouds; congestus and some deep convection initiation
15:01–19:01 Dec 7	Orographic cumulus; strengthening inversion
16:06–19:30 Dec 8	Clear air aerosol sampling
	Time (UTC) $13:02-17:01$ Nov 4 $13:09-17:05$ Nov 6 $12:10-16:10$ Nov 10 $16:48-20:00$ Nov 12 $14:00-18:00$ Nov 14 $13:05-16:00$ Nov 15 $14:05-18:00$ Nov 16 $12:18-16:30$ Nov 17 $15:10-19:06$ Nov 20 $18:22-20:27$ Nov 21 $14:31-18:11$ Nov 22 $16:17-20:25$ Nov 24 $15:51-19:07$ Nov 25 $15:08-18:50$ Nov 28 $14:16-16:32$ Nov 29 $16:20-18:47$ Dec 1 $12:06-16:11$ Dec 2 $16:03-20:09$ Dec 3 $17:51-19:01$ Dec 7 $16:06-19:30$ Dec 8

/er

es in cloud layer

G-1 Measurements

	Aircraft Instruments and Measurements
Positioning Measurements	Instrumentation
Position/Aircraft parameters	Aircraft Integrated Meteorological Measurement System-20, Global Positioning System (Miniature Integrated GPS/INS Tactical System), VectorNav-200 GPS/INS, Video Cam
Atmospheric State Measurements	Instrumentation
Pressure, Temperature, Humidity, Winds, Turbulence	Gust Probe, Rosemount 1221F2, Aircraft Integrated Meteorological Measurement Syst Hygrometer, GE-1011B Chilled Mirror Hygrometer, Licor LI-840A, Rosemount 1201F1
Aerosol and Trace Gas Measurements	Instrumentation
Aerosol Sampling	Aerosol Isokinetic Inlet, Counterflow Virtual Impactor (CVI) Inlet
Aerosol Optical Properties	Single Particle Soot Photometer, 3-wavelength Integrating Nephelometer, 3-wavelengt Photometer, 3-wavelength Single Channel Tricolor Absorption Photometer
Aerosol Chemical Composition	Single Particle Mass Spectrometer (miniSPLAT)
Aerosol Size Distribution	Ultra-High Sensitivity Aerosol Spectrometer, Scanning Mobility Particle Sizer, Passive Particle Counter Model CI-3100, Dual Polarized Cloud and Aerosol Spectrometer (CAS
CN Concentration	Fine (1 on Isokinetic Inlet and 1 on CVI Inlet) and Ultrafine CPCs
CCN Concentration	Dual-column CCN counter
INP Concentration	Filter Collections for Colorado State University Ice Spectrometer
Trace Gas Concentrations	N_2O , CO, O_3 , and SO ₂ Monitoring Systems
Cloud and Precipitation Measurements	Instrumentation
Hydrometeor Size Distribution	Fast Cloud Droplet Probe, 2-Dimensional Stereo Probe, High Volume Precipitation San Precipitation Spectrometer (CAPS; includes Cloud Imaging Probe, CAS, and Hotwire S
Hydrometeor Imagery	Cloud Particle Imager
Liquid Water Content	Particle Volume Monitor 100-A, Multi-Element Water Content Meter, Hotwire Sensor fro

n (GPS) DSM 232, C-MIGITS III nera P1344

tem-20, Tunable Diode Laser and E102AL

h Particle Soot Absorption

Cavity Aerosol Spectrometer, Optical S)

mpler 3, Cloud and Aerosol Sensor)

om CAPS

Environmental Conditions During CACTI

Varble, A. C., et al., 2021, *BAMS*, doi:10.1175/BAMS-D-20-0030.1.

Convective Environmental Condition Distributions and Diurnal Cycles

Varble, A. C., et al., 2021, BAMS, doi:10.1175/BAMS-D-20-0030.1.

Aerosol and Aerosol-Cloud Interaction Observations

Varble, A. C., et al., 2021, *BAMS,* doi:10.1175/BAMS-D-20-0030.1.

Warm Cloud Processes

Pacific

Northwest

Borque, P., et al., 2022: Peak rain rate sensitivity to observed cloud condensation nuclei and turbulence in continental warm shallow clouds during CACTI. *J. Geophys. Res. Atmos.,* 127, doi:10.1029/2022JD036864.

Stratocumulus Drizzle Case Paloma Borque

Wind shear layer remains constant and cloud depth does not increase during drizzle onset. The cloud decouples from the boundary layer during drizzle onset, indicating a potential role for lower CCN concentrations aloft.

Deep Convection Initiation (CI) Fail Case Pacific Northwest 21 November 2018

Success vs. Failure Thermodynamic Variability

Dense sounding networks during RELAMPAGO-mobile missions show considerable low level thermodynamic, particularly moisture, variability that greatly impacts convective inhibition and the level of free convection.

Upper PBL to lower troposphere moisture changes rapidly in time prior to deep convection initiation.

Just before deep convection initiation, CAPE and CIN are similar for both success and fail cases.

Marquis J. N., et al., 2021, *MWR*, doi:10.1175/MWR-D-20-0391.1.

1500 UTC 4 Dec 2018

Success vs. Failure Circulations

Dual-Doppler analyses and soundings highlight significantly different low level kinematic conditions on 29 Nov and 4 Dec.

29 Nov has a much shallower easterly upslope flow and regions of enhanced meridional-mean convergence indicating more robust mesoscale convergence that is also suggested by more widespread orographic congestus coverage.

Marquis J. N., et al., 2021, *MWR*, doi:10.1175/MWR-D-20-0391.1.

Tracked Cell Upscale Growth

Increasing cell size east of the terrain is correlated with increasing radar echo top heights, and these increases occur immediately east of the highest terrain.

Feng, Z, et al., 2022, MWR, doi:10.1175/MWR-D-21-0237.1.

Campaign-long 3-km WRF Performance

Zhang, Z., et al., 2021, MWR, doi:10.1175/MWR-D-20-0411.1.

Pacific

Northwest

Radar Dataset Collection and Scan Sequences

Hardin, J. C., et al., 2020: CACTI Radar b1 Processing: Corrections, Calibrations, and Processes Report, DOE/SC-ARM-TR-244.

- 15-min update cycle (Oct 15-March 1)
 - 15-tilt PPI "volume"
 - ZPPI
 - 6-azimuth hemispheric RHI (HSRHI) pattern
 - Repeat 6-azimuth HSRHI pattern
- During the IOP, HSRHI patterns were occasionally replaced with sector RHIs targeting convective cells displaced from the AMF site
- Downtime: Dec 27-Jan 20, Feb 9-21, March 2-7
- Starting March 7th, only W-E HSRHIs were performed because of unfixable azimuthal rotation issue

C-SAPR SGP PPI Scan Strategy

Refl.

 65.0
 Site: COR

 60.0
 Campaign: CACTI

 55.0
 Radar: CSAPR2

 50.0
 Frequency: 5635 MHz

 45.0
 N

 Lat: -32.1263°

 40.0
 D

 25.0
 Alt: 1131 m

 23.0
 Δ
 Scan: cor-hsrhi-cacti-a

 20.0
 Δ
 Azimuth: 90.0°

 15.0
 Δ
 Range ring: 20 km

 10.0
 Δ
 PRF: 1240 Hz

 0.0
 Ψ
 Pulse width: 0.670 μs

 -5.0
 Ψ
 minZe @1km:-41.3 dBz

 -10.0
 Π
 No. Samples: 102

 -20.0
 Δ
 Nyquist velocity: 16.5 m/s

 -25.0
 Scan speed: 6.0°/s

X/Ka-SACR Scans

- 15-min update cycle (Oct 15-Mar 5)
 - 30-deg sector RHI (every 3 deg between 240 and 270 deg) within stereo camera FOV
 - 6-azimuth hemispheric RHI (HSRHI) pattern
 - Repeat 6-azimuth HSRHI pattern
 - Repeat 6-azimuth HSRHI pattern again
- Only limited outages
- Starting March 5th, a 15 tilt PPI "volume" was put in place to replace the sector RHI and 1 HSRHI pattern because of problems with C-SAPR2
 - Oversampling was decreased • and range was increased to 62 km to "replace" missing C-SAPR2 scans

HSRHI Objects Connected to Cell Tracks Alexis Hunzinger, Joe Hardin

Our extensive database of HSRHI scans is being used to identify detailed HSRHI objects, which could be tied to the PPItracked objects.

Pacific

Connecting microphysical, dynamical, and thermodynamical conditions in RHIs *Jim Marquis*

